Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/56099
Title: Способи отримання порошків алюмомагнезіальної шпінелі. Огляд
Other Titles: Methods of obtaining of magnesium-aluminate spinelpowders. Review
Authors: Луцюк, І. В.
Ілючок, І. О.
Lutsyuk, I.
Iliuchok, I.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Луцюк І. В. Способи отримання порошків алюмомагнезіальної шпінелі. Огляд / І. В. Луцюк, І. О. Ілючок // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 50–58.
Bibliographic description (International): Lutsyuk I. Methods of obtaining of magnesium-aluminate spinelpowders. Review / I. Lutsyuk, I. Iliuchok // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 50–58.
Is part of: Chemistry, Technology and Application of Substances, 1 (3), 2020
Issue: 1
Issue Date: 24-Feb-2020
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Lviv
DOI: doi.org/10.23939/ctas2020.01.050
Keywords: алюмомагнезіальна шпінель
синтез шпінелі
твердофазовий синтез
золь-гель процес
метод Печіні
цитратний золь-гель синтез
magnesium-aluminate spinel
spinel synthesis
solid phase synthesis
sol-gel process
metodPechini
citrate sol-gel synthesis
Number of pages: 9
Page range: 50-58
Start page: 50
End page: 58
Abstract: Проаналізовано основні методи синтезу порошків алюмомагнезіальної шпінелі, їхні особливості та переваги. Розглянуто характер фізико-хімічної взаємодії компонентів у системі MgO–Al2O3, фізичні, кристалографічні характеристики та структурні параметри кристалічної гратки алюмомагнезіальної шпінелі. Наведено умови синтезу та здійснено якісне порівняння можливостей методів синтезу з погляду на властивості порошків шпінелі. Показано вплив різних чинників на повноту шпінелеутворення за різних методів синтезу шпінелі.
The main methods of synthesis of magnesium-aluminate spinel powder their features and advantages were analyzed. The character of the physicochemical interaction of components in the MgO–Al2O3 system physical and crystallographic characteristics and structural parameters of thecrystalline lattice of magnesium-aluminate spinel wereresearched. The synthesis conditions arepresented and qualitative comparison of the possibilities of synthesis methods in terms of theproperties of spinel powders are made. The influence of various factors on the fullness of spinelformation by diverse methods of spinel synthesis is shown.
URI: http://ena.lp.edu.ua:8080/handle/ntb/56099
Copyright owner: © Національний університет “Львівська політехніка”, 2020
URL for reference material: http://zhurnal.ape.relarn.ru/articles/2002/089.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479615/
References (Ukraine): 1. Ganesh, J. A. (2013). Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications. Int. Materials Revs., 115(16), 63–112.
2. Kashcheev, Y. D., Zemlianoi, K. H. (2017). Proyzvodstvo shpynely. Novye ohneupory, 3, 127–133 [in Russian].
3. Kashcheev, Y. D., Ctrelov, K. K., Mamykyn, P. S. (2007). Khymycheskaia tekhnolohyia oneuporov. Yntermet Ynzhynyrynh [in Russian].
4. Biukhel, H., Hyrsh, D., Bur, A. (2009). Shpynelnye aliumomahnyevyu materyaly dlia stoikykh futerovok stalerazlyvochnykh kovshei. Novye ohneupory, 4, 117–123 [in Russian].
5. Kashcheev, Y. D., Semiannykov, V. Y. (2000). Эlektroplavlenaia aliumomahnyevaia shpynel. Ohneupory y tekhnycheskaia keramyka, 9/10, 20–23 [in Russian].
6. Ledovskaia, E. H., Habelkov, S. V., Lytvynenko, L. M., Lohvynkov, D. S., Myronova, A. H., Odeichuk, M. A., …Tarasov, R. V. (2006). Nyzkotemperaturnyi syntez mahnyi-aliumynyevoi shpynely. Voprosy atomnoi nauky y tekhnyky. Seryia : Vakuum, chystye materyaly, sverkhprovodnyky, 3(15), 160–162 [in Russian].
7. Radyshevskaia, N. Y., Vereshchahyn, V. Y. (2011). Protsessy samorasprostraniaiushchehosia vysoko-temperaturnoho syntezi keramycheskykh pyhmentov so shpynelnoi fazoi. Vserossyiskoia rabochaia khymycheskaia konferentsyia “Butlerovskoe nasledye-2011”, 25 (8), 75–80 [in Russian].
8. Senyna, M. O., Lemeshev, D. O., Pedchenko, M. S., Popova, N. A., Lukyn, E. S. (2018). Keramyka na osnove aliumomahnezyalnoi shpynely s dobavkoi oksyda bora. Trudy Kolskoho nauchnoho tsentra RAN, 1(2), 729–733 [in Russian].
9. Horskyi, V. V. (2000). Yadernoe toplyvo s ynertnoi matrytsei. Atom. tekhn. rub., 10, 3–6 [in Russian].
10. Suárez, M., Fernández-Camacho, A., Torrecillas, R., Menéndez, J. L. (2012). Sintering to transparency of polycrystalline ceramic materials. Sintering of Ceramics –New Emerging Techniques, 527–552.
11. Bkhatnahar, A. (2011). Lehkye ballystycheskye materyaly. M. : Tekhnosfera [in Russian].
12. Patel, P. J., Gilde, G. A., Dehmer, P. G., McCauley, J. W. (2000). Transparent armor. The AMPTIC Newsletter, 4(3), 1–6.
13. Lukyn, E. S., Popova, N. A., Hlazachev, V. S., Pavliukova, L. T., Kulykov, N. A. (2015). Tekhnolohyia, svoistva y prymenenye optychesky prozrachnoi oksydnoi keramyky: perspektyvy razvytyia. Konstruktsyy yz kompozytsyonnykh materyalov, 3, 24–36 [in Russian].
14. Kachaev, A. A., Hrashchenkov, D. V., Lebedeva, Yu. E., Solntsev, S. St. (2016). Optychesky prozrachnaia keramyka (obzor). Steklo y keramyka, 4, 3–10 [in Russian].
15. Senyna, M. O., Lemeshev, D. O. (2016). Sposoby synteza poroshkov aliumomahnezyalnoi shpynely dlia poluchenyia optychesky prozrachnoi keramyky (obzor). Uspekhy v khymyy y khymycheskoi tekhnolohyy, KhKhKh(7), 101–103 [in Russian].
16. Senyna, M. O., Zhurba, E. V., Rusakova, L. Yu., Pedchenko, M. S., Lemeshev, D. O. (2017). Syntez poroshkov aliumomahnezyalnoi shpynely dlia poluchenyia prozrachnykh keramycheskykh materyalov. Uspekhy v khymyy y khymycheskoi tekhnolohyy, KhKhKhI(3), 99–101 [in Russian].
17. Routschka, G. (1996). Taschenbuch Feurfeste Werkstoffe. Ausg. – Essen: Vulkan-Verl.
18. Zemlianoi, K. H., Belousova, V. Yu., Kamenskykh, V. A. (2002). Odnostadyinyi syntez aliumomahnezyalnoi shpynely yz promyshlennykh ultradyspersnykh poroshkov pry temparaturakh nyzhe temperatur plavlenyia. Yssledovano v Rossyy, 979–987. Rezhym dostupa k zhurnalu: http://zhurnal.ape.relarn.ru/articles/2002/089.pdf [in Russian].
19. Kashii, N., Maekawa, H., Hinatsu, Y. (1999). Dynamics of the Cation Mixing of MgAl2O4 and ZnAl2O4 Spinel. J. Am. Ceram. Soc., 82(7), 1844–1848.
20. Zyman, Z. Z. (2008). Osnovy strukturnoi krystalohrafii. Kharkiv: KhNU imeni V. N. Karazina [in Ukrainian].
21. Sirenko, H. O., Tatarchuk, T. R., Myslin, M. V. (2014). Syntez ta krystalokhimichni doslidzhennia shpinelei MgAl2-khCrxO4, otrymanykh metodom khimichnoho osadzhennia. Fizyka i khimiia tverdoho tila, 15(2), 348–353 [in Ukrainian].
22. Lazarenko, E. K. (1970). Kurs myneralohyy. Kyiv: Vyshcha shkola [in Ukrainian].
23. Chanh, K., Yanh, Y., Liu, R. (1989). Poluchenye y prymenenye keramycheskykh tonkodyspersnykh poroshkov. J. Chongging Univ., 12 (2), 88–94 [in Russian].
24. Kato, A. (1997). Study on powder preparation in Japan. Amer. Ceram. Soc. Bull., 66 (4), 647–648.
25. Budnykov, P. P., Hynstlynh, A. M. (1971). Reaktsyy v smesiakh tverdkh veshchestv. M.: Stroiyzdat [in Russian].
26. Dehtiareva, Э. V. (1977). Mahnezyalno-sylykatnye y shpynelnye ohneupory. M.: Metallurhyia [in Russian].
27. Deng, Z.-Y., Fukasawa, T., Ando, M., Zhang, G.-J., Ohji, T. (2004). High-Surface-Area Alumina Ceramics Fabricated by the Decomposition of Al(OH)3. J. Amer. Cer. Soc., 84(3), 485–491.
28. Kashcheev, Y. D., Kamenskykh, V. A., Zemlianoi, K. H. (2003). Syntez shpynely yz kaustycheskoho mahnezyta y pyly proyzvodstva hlynozema. Novye ohneupory, 8, 17–21 [in Russian].
29. Diatlov, V. N., Zubov, A. S., Pysarov, V. A., Fysenko, B. L. (1997). Patent 2090538, Rossyiskaia Federatsyia [in Russian].
30. Panasiuk, H. P., Kozerozhets, Y. V., Danchevskaia, M. N., Yvakyn, Yu. D., Muraveva, H. P., Yzotov, A. D. (2019). Novyi metod synteza melkokrystallycheskoi aliumomahnyevoi shpynely. Doklady akademyy nauk, 487(4), 387–390 [in Russian].
31. Maksymov, A. Y., Moshnykov, V. A., Tayrov, Yu. M., Shylova, O. A. (2007). Osnovy zol-hel tekhnolohyy nanokompozytov. Эlmor [in Russian].
32. Semchenko, H. D. (1997). Zol-hel protsess v keramycheskoi tekhnolohyy. Kharkov: AO “Byznes Ynform” [in Russian].
33. Semchenko, H. D., Shuteeva, Y. Yu., Butenko, A. N., Borysenko, O. N., Starolat, E. E., Nykolaenko, V. N., Povshuk, V. V. (2011). Zol-hel kompozytsyy polyfunktsyonalnoho naznachenyia. Kharkov: Raduha [in Russian].
34. Skorodumova, O. B., Tarakhno, O. V., Oliinyk, D. Yu., Honcharenko, Ya. M., Shuba, I. V. (2017). Keramichni, kompozytsiini materialy y vohnestiiki pokryttia na osnovi hibrydnykh heliv. Kharkov: FOP Panov A. M. [in Ukrainian].
35. Faikov, P. P. (2007). Syntez y spekaemost poroshkov v systeme MgO–Al2O3, poluchennykh zol-hel metodom. (Dys. kand. tekhn. nauk). RKhTU ym. D. Y. Mendeleeva, Moskva [in Russian].
36. Tatarchuk, T. R., Sirenko, H. O., Yaremii, I. P., Boiko, Ye. V. (2014). Zol-hel tekhnolohiia u formuvanni nanorozmirnykh shpinelnykh ferytiv (ohliad). Visnyk Prykarpatskoho natsionalnoho universytetu imeni Vasylia Stefanyka. Seriia: Khimiia, XVIII, 8–15 [in Ukrainian].
37. Tretiakov, Yu. D. (2010). Funktsyonalnye nanomateryaly. M.: Fyzmatlyt [in Russian].
38. Ryzhonkov, D. Y., Levyna, V. V., Dzydzyhury, Э. L. (2008). Nanomateryaly. M.: BYNOM. [in Russian].
39. Borshchyshyn, Y. D., Lutsiuk, Y. V., Vakhula, Ya. Y., Kochubei, V. V. (2009). Syntez aliumomahnezyalnoi vysokodyspersnoi shpynely tsytratno-helevym metodom. Ohneupor y tekhnycheskaia keramyka, 10, 32–34 [in Russian].
40. Lutsiuk, I. V., Borshchyshyn, I. D. (2010). Aliumomahnezialna nanodyspersna shpinel, lehovana yonamy khromu (III). Visnyk NU “Lvivska politekhnika”, “Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia”, 667, 334–337 [in Ukrainian].
41. Lutsyuk, I., Vakhula, Ya. (2018). Theoretical Aspects of Modification Mechanism for Sol-Gel Ceramic Oxide Powders of Technical Application. Chemistry & Shemical Technology, 2018, 12(3), 386–390.
42. Ravi Kant Sharma, Ranjana Ghose. (2015). Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against. Ceramics International, 41, 967–975.
43. Mojtaba Kabir, Mehd Ghahar, Mahd Shafiee Afarani. (2014). Co-precipitation synthesis of nano Y2O3:Eu3+ with different morphologies and its photoluminescence properties. Ceramics International, 40, 10877–1088.
44. Ravi Kant Sharma, Ranjana Ghose. (2014). Synthesis of nanocrystalline CuO–ZnO mixed metal oxide powder by a homogeneous precipitation method. Ceramics International, 40, 10919–10926.
45. Domanski, D., Urretavizcaya, G., Castro, F. J., Gennari, F. C. (2004). Mechanochemical Synthesis of Magnesium Aluminate Spinel Powder at Room Temperature. J. Am. Ceram. Soc., 87, 2020–2024.
46. Zhao Huizhong. (2005). Poluchenye nanoporoshka MgAl2O4 metodom vakuumnoi sushky zamorazhvanyia. Naihuo cailiao Refractonies, 39(3), 168–171.
47. Doroshenko, M. M. (2017). Nyzkotemperaturnyi syntez nanoporoshkiv aliumomahnezialnoi shpineli z vykorystanniam prekursoru na osnovi kompleksu mahniiu i aliuminiiu z hlitsynom. Keramika: nauka i zhyttia, 4(37), 6–10 [in Ukrainian].
48. Poddenezhnyi, E. N., Boiko, A. A. (2003). Klassyfykatsyia sposobov poluchenyia ultradyspersnykh oksydnykh poroshkov (obzor). Vestnyk HHTU ym. P. O. Sukhoho, 1, 21–28 [in Russian].
49. Segal, D. L. (1984). Sol-gel processing: routes to oxide ceramics using colloidal dispersions of hydrous oxydes and alkoxyde intermediates. J. Non-Cryst. Solids, 63 (1–2), 183–191.
50. Yang, G., Park, S-J. (2019). Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. Materials (Basel), 12(7), Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479615/
51. Somia, S. (1990) Hydrothermal preparation of fine powders. Adv. Ceram., III, 207–243.
References (International): 1. Ganesh, J. A. (2013). Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications. Int. Materials Revs., 115(16), 63–112.
2. Kashcheev, Y. D., Zemlianoi, K. H. (2017). Proyzvodstvo shpynely. Novye ohneupory, 3, 127–133 [in Russian].
3. Kashcheev, Y. D., Ctrelov, K. K., Mamykyn, P. S. (2007). Khymycheskaia tekhnolohyia oneuporov. Yntermet Ynzhynyrynh [in Russian].
4. Biukhel, H., Hyrsh, D., Bur, A. (2009). Shpynelnye aliumomahnyevyu materyaly dlia stoikykh futerovok stalerazlyvochnykh kovshei. Novye ohneupory, 4, 117–123 [in Russian].
5. Kashcheev, Y. D., Semiannykov, V. Y. (2000). Elektroplavlenaia aliumomahnyevaia shpynel. Ohneupory y tekhnycheskaia keramyka, 9/10, 20–23 [in Russian].
6. Ledovskaia, E. H., Habelkov, S. V., Lytvynenko, L. M., Lohvynkov, D. S., Myronova, A. H., Odeichuk, M. A., …Tarasov, R. V. (2006). Nyzkotemperaturnyi syntez mahnyi-aliumynyevoi shpynely. Voprosy atomnoi nauky y tekhnyky. Seryia : Vakuum, chystye materyaly, sverkhprovodnyky, 3(15), 160–162 [in Russian].
7. Radyshevskaia, N. Y., Vereshchahyn, V. Y. (2011). Protsessy samorasprostraniaiushchehosia vysoko-temperaturnoho syntezi keramycheskykh pyhmentov so shpynelnoi fazoi. Vserossyiskoia rabochaia khymycheskaia konferentsyia "Butlerovskoe nasledye-2011", 25 (8), 75–80 [in Russian].
8. Senyna, M. O., Lemeshev, D. O., Pedchenko, M. S., Popova, N. A., Lukyn, E. S. (2018). Keramyka na osnove aliumomahnezyalnoi shpynely s dobavkoi oksyda bora. Trudy Kolskoho nauchnoho tsentra RAN, 1(2), 729–733 [in Russian].
9. Horskyi, V. V. (2000). Yadernoe toplyvo s ynertnoi matrytsei. Atom. tekhn. rub., 10, 3–6 [in Russian].
10. Suárez, M., Fernández-Camacho, A., Torrecillas, R., Menéndez, J. L. (2012). Sintering to transparency of polycrystalline ceramic materials. Sintering of Ceramics –New Emerging Techniques, 527–552.
11. Bkhatnahar, A. (2011). Lehkye ballystycheskye materyaly. M. : Tekhnosfera [in Russian].
12. Patel, P. J., Gilde, G. A., Dehmer, P. G., McCauley, J. W. (2000). Transparent armor. The AMPTIC Newsletter, 4(3), 1–6.
13. Lukyn, E. S., Popova, N. A., Hlazachev, V. S., Pavliukova, L. T., Kulykov, N. A. (2015). Tekhnolohyia, svoistva y prymenenye optychesky prozrachnoi oksydnoi keramyky: perspektyvy razvytyia. Konstruktsyy yz kompozytsyonnykh materyalov, 3, 24–36 [in Russian].
14. Kachaev, A. A., Hrashchenkov, D. V., Lebedeva, Yu. E., Solntsev, S. St. (2016). Optychesky prozrachnaia keramyka (obzor). Steklo y keramyka, 4, 3–10 [in Russian].
15. Senyna, M. O., Lemeshev, D. O. (2016). Sposoby synteza poroshkov aliumomahnezyalnoi shpynely dlia poluchenyia optychesky prozrachnoi keramyky (obzor). Uspekhy v khymyy y khymycheskoi tekhnolohyy, KhKhKh(7), 101–103 [in Russian].
16. Senyna, M. O., Zhurba, E. V., Rusakova, L. Yu., Pedchenko, M. S., Lemeshev, D. O. (2017). Syntez poroshkov aliumomahnezyalnoi shpynely dlia poluchenyia prozrachnykh keramycheskykh materyalov. Uspekhy v khymyy y khymycheskoi tekhnolohyy, KhKhKhI(3), 99–101 [in Russian].
17. Routschka, G. (1996). Taschenbuch Feurfeste Werkstoffe. Ausg, Essen: Vulkan-Verl.
18. Zemlianoi, K. H., Belousova, V. Yu., Kamenskykh, V. A. (2002). Odnostadyinyi syntez aliumomahnezyalnoi shpynely yz promyshlennykh ultradyspersnykh poroshkov pry temparaturakh nyzhe temperatur plavlenyia. Yssledovano v Rossyy, 979–987. Rezhym dostupa k zhurnalu: http://zhurnal.ape.relarn.ru/articles/2002/089.pdf [in Russian].
19. Kashii, N., Maekawa, H., Hinatsu, Y. (1999). Dynamics of the Cation Mixing of MgAl2O4 and ZnAl2O4 Spinel. J. Am. Ceram. Soc., 82(7), 1844–1848.
20. Zyman, Z. Z. (2008). Osnovy strukturnoi krystalohrafii. Kharkiv: KhNU imeni V. N. Karazina [in Ukrainian].
21. Sirenko, H. O., Tatarchuk, T. R., Myslin, M. V. (2014). Syntez ta krystalokhimichni doslidzhennia shpinelei MgAl2-khCrxO4, otrymanykh metodom khimichnoho osadzhennia. Fizyka i khimiia tverdoho tila, 15(2), 348–353 [in Ukrainian].
22. Lazarenko, E. K. (1970). Kurs myneralohyy. Kyiv: Vyshcha shkola [in Ukrainian].
23. Chanh, K., Yanh, Y., Liu, R. (1989). Poluchenye y prymenenye keramycheskykh tonkodyspersnykh poroshkov. J. Chongging Univ., 12 (2), 88–94 [in Russian].
24. Kato, A. (1997). Study on powder preparation in Japan. Amer. Ceram. Soc. Bull., 66 (4), 647–648.
25. Budnykov, P. P., Hynstlynh, A. M. (1971). Reaktsyy v smesiakh tverdkh veshchestv. M., Stroiyzdat [in Russian].
26. Dehtiareva, E. V. (1977). Mahnezyalno-sylykatnye y shpynelnye ohneupory. M., Metallurhyia [in Russian].
27. Deng, Z.-Y., Fukasawa, T., Ando, M., Zhang, G.-J., Ohji, T. (2004). High-Surface-Area Alumina Ceramics Fabricated by the Decomposition of Al(OH)3. J. Amer. Cer. Soc., 84(3), 485–491.
28. Kashcheev, Y. D., Kamenskykh, V. A., Zemlianoi, K. H. (2003). Syntez shpynely yz kaustycheskoho mahnezyta y pyly proyzvodstva hlynozema. Novye ohneupory, 8, 17–21 [in Russian].
29. Diatlov, V. N., Zubov, A. S., Pysarov, V. A., Fysenko, B. L. (1997). Patent 2090538, Rossyiskaia Federatsyia [in Russian].
30. Panasiuk, H. P., Kozerozhets, Y. V., Danchevskaia, M. N., Yvakyn, Yu. D., Muraveva, H. P., Yzotov, A. D. (2019). Novyi metod synteza melkokrystallycheskoi aliumomahnyevoi shpynely. Doklady akademyy nauk, 487(4), 387–390 [in Russian].
31. Maksymov, A. Y., Moshnykov, V. A., Tayrov, Yu. M., Shylova, O. A. (2007). Osnovy zol-hel tekhnolohyy nanokompozytov. Elmor [in Russian].
32. Semchenko, H. D. (1997). Zol-hel protsess v keramycheskoi tekhnolohyy. Kharkov: AO "Byznes Ynform" [in Russian].
33. Semchenko, H. D., Shuteeva, Y. Yu., Butenko, A. N., Borysenko, O. N., Starolat, E. E., Nykolaenko, V. N., Povshuk, V. V. (2011). Zol-hel kompozytsyy polyfunktsyonalnoho naznachenyia. Kharkov: Raduha [in Russian].
34. Skorodumova, O. B., Tarakhno, O. V., Oliinyk, D. Yu., Honcharenko, Ya. M., Shuba, I. V. (2017). Keramichni, kompozytsiini materialy y vohnestiiki pokryttia na osnovi hibrydnykh heliv. Kharkov: FOP Panov A. M. [in Ukrainian].
35. Faikov, P. P. (2007). Syntez y spekaemost poroshkov v systeme MgO–Al2O3, poluchennykh zol-hel metodom. (Dys. kand. tekhn. nauk). RKhTU ym. D. Y. Mendeleeva, Moskva [in Russian].
36. Tatarchuk, T. R., Sirenko, H. O., Yaremii, I. P., Boiko, Ye. V. (2014). Zol-hel tekhnolohiia u formuvanni nanorozmirnykh shpinelnykh ferytiv (ohliad). Visnyk Prykarpatskoho natsionalnoho universytetu imeni Vasylia Stefanyka. Seriia: Khimiia, XVIII, 8–15 [in Ukrainian].
37. Tretiakov, Yu. D. (2010). Funktsyonalnye nanomateryaly. M., Fyzmatlyt [in Russian].
38. Ryzhonkov, D. Y., Levyna, V. V., Dzydzyhury, E. L. (2008). Nanomateryaly. M., BYNOM. [in Russian].
39. Borshchyshyn, Y. D., Lutsiuk, Y. V., Vakhula, Ya. Y., Kochubei, V. V. (2009). Syntez aliumomahnezyalnoi vysokodyspersnoi shpynely tsytratno-helevym metodom. Ohneupor y tekhnycheskaia keramyka, 10, 32–34 [in Russian].
40. Lutsiuk, I. V., Borshchyshyn, I. D. (2010). Aliumomahnezialna nanodyspersna shpinel, lehovana yonamy khromu (III). Visnyk NU "Lvivska politekhnika", "Khimiia, tekhnolohiia rechovyn ta yikh zastosuvannia", 667, 334–337 [in Ukrainian].
41. Lutsyuk, I., Vakhula, Ya. (2018). Theoretical Aspects of Modification Mechanism for Sol-Gel Ceramic Oxide Powders of Technical Application. Chemistry & Shemical Technology, 2018, 12(3), 386–390.
42. Ravi Kant Sharma, Ranjana Ghose. (2015). Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against. Ceramics International, 41, 967–975.
43. Mojtaba Kabir, Mehd Ghahar, Mahd Shafiee Afarani. (2014). Co-precipitation synthesis of nano Y2O3:Eu3+ with different morphologies and its photoluminescence properties. Ceramics International, 40, 10877–1088.
44. Ravi Kant Sharma, Ranjana Ghose. (2014). Synthesis of nanocrystalline CuO–ZnO mixed metal oxide powder by a homogeneous precipitation method. Ceramics International, 40, 10919–10926.
45. Domanski, D., Urretavizcaya, G., Castro, F. J., Gennari, F. C. (2004). Mechanochemical Synthesis of Magnesium Aluminate Spinel Powder at Room Temperature. J. Am. Ceram. Soc., 87, 2020–2024.
46. Zhao Huizhong. (2005). Poluchenye nanoporoshka MgAl2O4 metodom vakuumnoi sushky zamorazhvanyia. Naihuo cailiao Refractonies, 39(3), 168–171.
47. Doroshenko, M. M. (2017). Nyzkotemperaturnyi syntez nanoporoshkiv aliumomahnezialnoi shpineli z vykorystanniam prekursoru na osnovi kompleksu mahniiu i aliuminiiu z hlitsynom. Keramika: nauka i zhyttia, 4(37), 6–10 [in Ukrainian].
48. Poddenezhnyi, E. N., Boiko, A. A. (2003). Klassyfykatsyia sposobov poluchenyia ultradyspersnykh oksydnykh poroshkov (obzor). Vestnyk HHTU ym. P. O. Sukhoho, 1, 21–28 [in Russian].
49. Segal, D. L. (1984). Sol-gel processing: routes to oxide ceramics using colloidal dispersions of hydrous oxydes and alkoxyde intermediates. J. Non-Cryst. Solids, 63 (1–2), 183–191.
50. Yang, G., Park, S-J. (2019). Conventional and Microwave Hydrothermal Synthesis and Application of Functional Materials: A Review. Materials (Basel), 12(7), Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6479615/
51. Somia, S. (1990) Hydrothermal preparation of fine powders. Adv. Ceram., III, 207–243.
Content type: Article
Appears in Collections:Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.