Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/56092
Title: Формування гідрогелів на основі пектину з різним ступенем естерифікації
Other Titles: Formation of pectine-based hydrogels with different degree of esterification.
Authors: Дронь, І. А.
Стасюк, А. В.
Букартик, М. М.
Лугова, Ю. І.
Самарик, В. Я.
Dron, I.
Stasiuk, A.
Bukartyk, M.
Lugova, Yu.
Samaryk, V.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Формування гідрогелів на основі пектину з різним ступенем естерифікації / І. А. Дронь, А. В. Стасюк, М. М. Букартик, Ю. І. Лугова, В. Я. Самарик // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 239–244.
Bibliographic description (International): Formation of pectine-based hydrogels with different degree of esterification. / I. Dron, A. Stasiuk, M. Bukartyk, Yu. Lugova, V. Samaryk // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 239–244.
Is part of: Chemistry, Technology and Application of Substances, 1 (3), 2020
Issue: 1
Issue Date: 24-Feb-2020
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Lviv
DOI: doi.org/10.23939/ctas2020.01.239
Keywords: гідрогель
пектин
альгінат натрію
полісахарид
ступінь етерифікації
hydrogel
pectin
sodium alginate
polysaccharide
degree of esterification
Number of pages: 6
Page range: 239-244
Start page: 239
End page: 244
Abstract: З використанням пектину зі ступенем естерифікації 81,5 % у роботі одержано різні зразки пектинів зі ступенями естерифікації 40–70 %. Показано, що визначальним фактором для успішного формування гідрогелевих пластин є ступінь естерифікації полісахариду. Встановлено, що гідрогелеві пластини за методом структурування солями кальцію фор- муються лише на основі пектину зі ступенем естерифікації меншим ніж 70 %. Запропо- новано метод отримання гідрогелевих пластин на основі пектину зі ступенем естерифікації більшим ніж 70% через введення додаткового гелеутворюючого полімеру альгінату натрію.
The various samples of pectins with degrees of esterification of 40–70 % in the work were obtained using pectin with degree of esterification of 81.5 %. It was shown that the determining factor for successful formation of hydrogel plates is the degree of esterification of polysaccharide. It was established that hydrogel plates obtained by the method of structuring of calcium salts are formed only on the basis of pectin with the degree of esterification less than 70%. A method of obtaining hydrogel plates based on pectin with a degree of esterification more than 70% by adding gel-forming polymersodium alginate is proposed.
URI: http://ena.lp.edu.ua:8080/handle/ntb/56092
Copyright owner: © Національний університет “Львівська політехніка”, 2020
References (Ukraine): 1. Donchenko, L. V., Firsov.- M, G. G. (2007). Pektin: osnovnie svoystva, proizvodstvo i primenenie. Moskva, DeLi print.
2. Mazur, L. M., Simurova, N. V., Sliva, Yu. V. (2014). Fiziko-himicheskie protsesi geleobrazovaniya pektinov v pischevih tehnologIyah. Sahar, №2, 43–46.
3. Löfgren, C., Walkenström, P., & Hermansson, A.-M. (2002). Microstructure and Rheological Behavior of Pure and Mixed Pectin Gels. Biomacromolecules, 3(6), 1144–1153. doi: 10.1021/bm020044v
4. Aymeson, A. (2012). Pischevie zagustiteli, stabilizatori, geleobrazovateli. Sankt-Peterburg, Professiya.
5. Aqdas Noreen, Zill-i-Huma Nazli , Javeria Akram, Ijaz Rasul , Asim Mansha, Nazia Yaqoob, Rehana Iqbal, Shazia Tabasum, Mohammad Zuber, Khalid Mahmood Zia. (2017). Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 101,254-272. doi: 10.1016/j.ijbiomac.2017.03.029
6. Smistad, G., Bøyum, S., Alund, S., Samuelsen, A., & Hiorth, M. (2012). The potential of pectin as a stabilizer for liposomal drug delivery systems. Carbohydrate Polymers, 90(3), 1337-1344. doi: 10.1016/j.carbpol.2012.07.002
7. Soroka, O. B., Kosenko, S. V. (2006). Patent Ukrainy 16836. Kyiv: Derzhavnyi departament intelektualnoi vlasnosti.
8. Willats, W., McCartney, L., Mackie, W., & Knox, J. (2001). Pectin: cell biology and prospects for functional analysis Plant Molecular Biology, 47(1/2), 9–27. doi: 10.1023/a:1010662911148.
9. Shablin, D. V., Pavlenko, S. G., Evglevskiy, A. A., Bondarenko, P. P., Huranov, A. A. (2013). Sovremennyie ranevyie pokryitiya v mestnom lechenii ran razlichnogo Geneza. Fundam. Issledovaniya, 12(2), 361–365.
10. Syhhya, S., Khanna, Dzh. H. (1983). Kolychestvennыiorhanycheskyianalyzpofunktsyonalnыmhruppam. Moskva, Khimiia.
11. Masoud Rezvanian, Naveed Ahmad, Mohd Cairul Iqbal Mohd Amin, Shiow-Fern Ng. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140. doi: 10.1016/j.ijbiomac.2016.12.079
12. Vithanage, C., Grimson, M., Wills, P., Harrison, P., & Smith, B. (2010). Rheological and structural properties of high-methoxyl esterified, low-methoxyl esterefied and low-methoxyl amidated pectin gels. Journal Of Texture Studies, 41(6), 899–927. doi: 10.1111/j.1745-4603.2010.00261.x
13. Krykh, H. B. (2007). Osoblyvosti zastosuvannia reolohichnykh modelei neniutonivskykh ridyn. Visnyk Natsionalnoho universytetu “Lvivska politekhnika”, № 581, 71–82.
14. Lee, K., Mooney, D. (2012). Alginate: Properties and biomedical applications. Progress In Polymer Science, 37(1), 106-126. doi: 10.1016/j.progpolymsci.2011.06.003
15. Schipunov, Yu. A., Postnova, I. V., Greben, V. P. (2000). Poluchenie geley alginata kaltsiya metodom elektrodializa. Zhurn. fiz.him. 74(7), 1298-1302.
16. Lee, K., & Mooney, D. (2012). Alginate: Properties and biomedical applications. Progress In Polymer Science, 37(1), 106–126. doi: 10.1016/j.progpolymsci. 2011.06.003
References (International): 1. Donchenko, L. V., Firsov, M, G. G. (2007). Pektin: osnovnie svoystva, proizvodstvo i primenenie. Moskva, DeLi print.
2. Mazur, L. M., Simurova, N. V., Sliva, Yu. V. (2014). Fiziko-himicheskie protsesi geleobrazovaniya pektinov v pischevih tehnologIyah. Sahar, No 2, 43–46.
3. Löfgren, C., Walkenström, P., & Hermansson, A.-M. (2002). Microstructure and Rheological Behavior of Pure and Mixed Pectin Gels. Biomacromolecules, 3(6), 1144–1153. doi: 10.1021/bm020044v
4. Aymeson, A. (2012). Pischevie zagustiteli, stabilizatori, geleobrazovateli. Sankt-Peterburg, Professiya.
5. Aqdas Noreen, Zill-i-Huma Nazli , Javeria Akram, Ijaz Rasul , Asim Mansha, Nazia Yaqoob, Rehana Iqbal, Shazia Tabasum, Mohammad Zuber, Khalid Mahmood Zia. (2017). Pectins functionalized biomaterials; a new viable approach for biomedical applications: A review. International Journal of Biological Macromolecules, 101,254-272. doi: 10.1016/j.ijbiomac.2017.03.029
6. Smistad, G., Bøyum, S., Alund, S., Samuelsen, A., & Hiorth, M. (2012). The potential of pectin as a stabilizer for liposomal drug delivery systems. Carbohydrate Polymers, 90(3), 1337-1344. doi: 10.1016/j.carbpol.2012.07.002
7. Soroka, O. B., Kosenko, S. V. (2006). Patent Ukrainy 16836. Kyiv: Derzhavnyi departament intelektualnoi vlasnosti.
8. Willats, W., McCartney, L., Mackie, W., & Knox, J. (2001). Pectin: cell biology and prospects for functional analysis Plant Molecular Biology, 47(1/2), 9–27. doi: 10.1023/a:1010662911148.
9. Shablin, D. V., Pavlenko, S. G., Evglevskiy, A. A., Bondarenko, P. P., Huranov, A. A. (2013). Sovremennyie ranevyie pokryitiya v mestnom lechenii ran razlichnogo Geneza. Fundam. Issledovaniya, 12(2), 361–365.
10. Syhhya, S., Khanna, Dzh. H. (1983). Kolychestvennyiorhanycheskyianalyzpofunktsyonalnymhruppam. Moskva, Khimiia.
11. Masoud Rezvanian, Naveed Ahmad, Mohd Cairul Iqbal Mohd Amin, Shiow-Fern Ng. (2017). Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. International Journal of Biological Macromolecules, 97, 131–140. doi: 10.1016/j.ijbiomac.2016.12.079
12. Vithanage, C., Grimson, M., Wills, P., Harrison, P., & Smith, B. (2010). Rheological and structural properties of high-methoxyl esterified, low-methoxyl esterefied and low-methoxyl amidated pectin gels. Journal Of Texture Studies, 41(6), 899–927. doi: 10.1111/j.1745-4603.2010.00261.x
13. Krykh, H. B. (2007). Osoblyvosti zastosuvannia reolohichnykh modelei neniutonivskykh ridyn. Visnyk Natsionalnoho universytetu "Lvivska politekhnika", No 581, 71–82.
14. Lee, K., Mooney, D. (2012). Alginate: Properties and biomedical applications. Progress In Polymer Science, 37(1), 106-126. doi: 10.1016/j.progpolymsci.2011.06.003
15. Schipunov, Yu. A., Postnova, I. V., Greben, V. P. (2000). Poluchenie geley alginata kaltsiya metodom elektrodializa. Zhurn. fiz.him. 74(7), 1298-1302.
16. Lee, K., & Mooney, D. (2012). Alginate: Properties and biomedical applications. Progress In Polymer Science, 37(1), 106–126. doi: 10.1016/j.progpolymsci. 2011.06.003
Content type: Article
Appears in Collections:Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.