Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/56091
Title: Армування альгінат-желатинового гідрогелю функціоналізованим поліпропіленовим мікроволокном
Other Titles: Reinforcement of alginate-gelatin hydrogel using functionalized polypropylene microfiber
Authors: Носова, Н. Г.
Майкович, О. В.
Борденюк, О. Ю.
Яковів, М. В.
Варваренко, С. М.
Nosova, N.
Maikovych, O.
Bordeniuk, O.
Yakoviv, M.
Varvarenko, S.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Армування альгінат-желатинового гідрогелю функціоналізованим поліпропіленовим мікроволокном / Н. Г. Носова, О. В. Майкович, О. Ю. Борденюк, М. В. Яковів, С. М. Варваренко // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 232–238.
Bibliographic description (International): Reinforcement of alginate-gelatin hydrogel using functionalized polypropylene microfiber / N. Nosova, O. Maikovych, O. Bordeniuk, M. Yakoviv, S. Varvarenko // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 232–238.
Is part of: Chemistry, Technology and Application of Substances, 1 (3), 2020
Issue: 1
Issue Date: 24-Feb-2020
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Lviv
DOI: doi.org/10.23939/ctas2020.01.232
Keywords: поліпропілен
мікроволокно
акрилова кислота
наношар
поліпероксид
polypropylene
microfiber
acrylic acid
nanolayer
polyperoxide
Number of pages: 7
Page range: 232-238
Start page: 232
End page: 238
Abstract: Подано метод модифікування поліпропіленових планарних поверхонь та мікроволокон через ковалентне прищеплення наношару поліакрилової кислоти за вільно-радикальним механізмом. Після прищеплення наношарів гідрофобна поверхня поліпропілену набуває гідрофільних властивостей, що підтверджено зміною вільної поверхневої енергії на планарних поверхнях і зміною величини водоутримання мікроволокнами до та після модифікування. У разі використання для армування альгінат-желатинового гідрогелю модифікованих мікроволокон (1 % в гідрогелі) досягається значне (на 100 %) підвищення його механічних властивостей.
In this paper the method of modification of polypropylene planar surfaces and microfibers through covalent grafting of a polyacrylic acid nanolayer by a free radical mechanismis presented. After grafting of the nanolayers, the hydrophobic surface of the polypropylene acquires hydrophilic properties. These changes are confirmed by the alteration of the free surface energy on the planar surfaces and by the increase of retentioned water by the microfibers before and after modification. Reinforcing of the alginate-gelatin hydrogel by modified microfibers (1% in the hydrogel) allows to achieve a significant (100 %) increase of its mechanical properties.
URI: http://ena.lp.edu.ua:8080/handle/ntb/56091
Copyright owner: © Національний університет “Львівська політехніка”, 2020
References (Ukraine): 1. Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1–11. doi: 10.1016/j.eurpolymj.2017.12.046
2. Hennink, W., & Nostrum, C. V. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223–236. doi: 10.1016/j.addr.2012.09.009
3. Alaei, J., Boroojerdi, S. H., Rabiei, Z. (2005). Application of hydrogels in drying operation. Petrol Coal,47(3), 32–37.
4. Boateng, J., Burgos-Amador, R., Okeke, O., & Pawar, H. (2015). Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. International Journal of Biological Macromolecules, 79, 63–71. doi: 10. 1016/ j.ijbiomac.2015.04.048
5. Oyen, M. L. (2013). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. doi: 10.1179/1743280413y. 0000000022
6. Khan, A., Othman, M. B. H., Razak, K. A., & Akil, H. M. (2013). Synthesis and physicochemical investigation of chitosan-PMAA-based dual-responsive hydrogels. Journal of Polymer Research, 20(10). doi: 10.1007/s10965-013-0273-7
7. Peppas, N. A., Huang, Y., Torres-Lugo,M.,Ward, J. H., & Zhang, J. (2000). Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annual Review of Biomedical Engineering, 2(1), 9–29. doi: 10.1146/annurev.bioeng.2.1.9
8. Schoener, C. A., Hutson, H. N., & Peppas, N. A. (2012). pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. Journal of Biomedical Materials Research Part A, 101A(8), 2229–2236. doi: 10.1002/ jbm.a. 34532
9. Uyama, Y., Kato, K., & Ikada, Y. (n.d.). Surface Modification of Polymers by Grafting. Grafting/Characterization Techniques/Kinetic Modeling Advances in Polymer Science, 1–39. doi: 10.1007/3-540-69685-7_1
10. Tirrell, M., Kokkoli, E., & Biesalski, M. (2002). The role of surface science in bioengineered materials. Surface Science, 500(1-3), 61–83. doi: 10.1016/s0039-6028(01)01548-5
11. Reznickova, A., Kvitek, O., Kolarova, K., Smejkalova, Z., & Svorcik, V. (2017). Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma–metal and plasma–metal–carbon interfaces. Japanese Journal of Applied Physics, 56(6S1). doi: 10.7567/jjap.56.06gg03
12. Granados, E., Martinez-Calderon, M., Gomez, M., Rodriguez, A., & Olaizola, S. M. (2017). Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Optics Express, 25(13), 15330. doi: 10.1364/oe.25.015330
13. Varvarenko, S., Voronov, A., Samaryk, V., Tarnavchyk, I., Roiter, Y., Minko, S., … Voronov, S. (2011). Polyolefin surface activation by grafting of functional polyperoxide. Reactive and Functional Polymers, 71(2), 210–218. doi: 10.1016/ j.reactfunctpolym. 2010.11.028
14. Nosova, N., Roiter, Y., Samaryk, V., Varvarenko, S., Stetsyshyn, Y., Minko, S., … Voronov, S. (2004). Polypropylene surface peroxidation with heterofunctional polyperoxides. Macromolecular Symposia, 210(1), 339–348. doi: 10.1002/masy.20045063
15. Samaryk, V., Tarnavchyk, I., Voronov, A., Varvarenko, S., Nosova, N., Kohut, A., & Voronov, S. (2009). A New Acrylamide-Based Peroxide Monomer: Synthesis and Copolymerization with Octyl Methacrylate. Macromolecules, 42(17), 6495–6500. doi: 10.1021/ma901211s
16. Samaryk, V., Voronov, A., Tarnavchyk, I., Varvarenko, S., Nosova, N., Budishevskaya, O., Kohut, A., Voronov S. (2012) Formation of Coatings with Tailored Properties on Polyperoxide-Modified Polymeric Surfaces. Progress in Organic Coatings, 74(4), 687–696. doi.org/10.1016/j.porgcoat.2011.07.015
17. Van Krevelen, D. V. (1976). Svoystva i khimicheskoye stroyeniye polimerov. Moscov: Khimiya.
18. Hogt, A. H., Meijer, J., & Jelenič, J. (1997). Modification of polypropylene by organic peroxides. Reactive Modifiers for Polymers, 84–132. doi: 10.1007/978-94-009-1449-0_2
References (International): 1. Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1–11. doi: 10.1016/j.eurpolymj.2017.12.046
2. Hennink, W., & Nostrum, C. V. (2012). Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 64, 223–236. doi: 10.1016/j.addr.2012.09.009
3. Alaei, J., Boroojerdi, S. H., Rabiei, Z. (2005). Application of hydrogels in drying operation. Petrol Coal,47(3), 32–37.
4. Boateng, J., Burgos-Amador, R., Okeke, O., & Pawar, H. (2015). Composite alginate and gelatin based bio-polymeric wafers containing silver sulfadiazine for wound healing. International Journal of Biological Macromolecules, 79, 63–71. doi: 10. 1016/ j.ijbiomac.2015.04.048
5. Oyen, M. L. (2013). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. doi: 10.1179/1743280413y. 0000000022
6. Khan, A., Othman, M. B. H., Razak, K. A., & Akil, H. M. (2013). Synthesis and physicochemical investigation of chitosan-PMAA-based dual-responsive hydrogels. Journal of Polymer Research, 20(10). doi: 10.1007/s10965-013-0273-7
7. Peppas, N. A., Huang, Y., Torres-Lugo,M.,Ward, J. H., & Zhang, J. (2000). Physicochemical Foundations and Structural Design of Hydrogels in Medicine and Biology. Annual Review of Biomedical Engineering, 2(1), 9–29. doi: 10.1146/annurev.bioeng.2.1.9
8. Schoener, C. A., Hutson, H. N., & Peppas, N. A. (2012). pH-responsive hydrogels with dispersed hydrophobic nanoparticles for the oral delivery of chemotherapeutics. Journal of Biomedical Materials Research Part A, 101A(8), 2229–2236. doi: 10.1002/ jbm.a. 34532
9. Uyama, Y., Kato, K., & Ikada, Y. (n.d.). Surface Modification of Polymers by Grafting. Grafting/Characterization Techniques/Kinetic Modeling Advances in Polymer Science, 1–39. doi: 10.1007/3-540-69685-7_1
10. Tirrell, M., Kokkoli, E., & Biesalski, M. (2002). The role of surface science in bioengineered materials. Surface Science, 500(1-3), 61–83. doi: 10.1016/s0039-6028(01)01548-5
11. Reznickova, A., Kvitek, O., Kolarova, K., Smejkalova, Z., & Svorcik, V. (2017). Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma–metal and plasma–metal–carbon interfaces. Japanese Journal of Applied Physics, 56(6S1). doi: 10.7567/jjap.56.06gg03
12. Granados, E., Martinez-Calderon, M., Gomez, M., Rodriguez, A., & Olaizola, S. M. (2017). Photonic structures in diamond based on femtosecond UV laser induced periodic surface structuring (LIPSS). Optics Express, 25(13), 15330. doi: 10.1364/oe.25.015330
13. Varvarenko, S., Voronov, A., Samaryk, V., Tarnavchyk, I., Roiter, Y., Minko, S., … Voronov, S. (2011). Polyolefin surface activation by grafting of functional polyperoxide. Reactive and Functional Polymers, 71(2), 210–218. doi: 10.1016/ j.reactfunctpolym. 2010.11.028
14. Nosova, N., Roiter, Y., Samaryk, V., Varvarenko, S., Stetsyshyn, Y., Minko, S., … Voronov, S. (2004). Polypropylene surface peroxidation with heterofunctional polyperoxides. Macromolecular Symposia, 210(1), 339–348. doi: 10.1002/masy.20045063
15. Samaryk, V., Tarnavchyk, I., Voronov, A., Varvarenko, S., Nosova, N., Kohut, A., & Voronov, S. (2009). A New Acrylamide-Based Peroxide Monomer: Synthesis and Copolymerization with Octyl Methacrylate. Macromolecules, 42(17), 6495–6500. doi: 10.1021/ma901211s
16. Samaryk, V., Voronov, A., Tarnavchyk, I., Varvarenko, S., Nosova, N., Budishevskaya, O., Kohut, A., Voronov S. (2012) Formation of Coatings with Tailored Properties on Polyperoxide-Modified Polymeric Surfaces. Progress in Organic Coatings, 74(4), 687–696. doi.org/10.1016/j.porgcoat.2011.07.015
17. Van Krevelen, D. V. (1976). Svoystva i khimicheskoye stroyeniye polimerov. Moscov: Khimiya.
18. Hogt, A. H., Meijer, J., & Jelenič, J. (1997). Modification of polypropylene by organic peroxides. Reactive Modifiers for Polymers, 84–132. doi: 10.1007/978-94-009-1449-0_2
Content type: Article
Appears in Collections:Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.