Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/56066
Title: Aсtivity of binary vinadium compounds in reaction of epoxidation of 1-octene and decomposition of tert-butyl hydroperoxide
Other Titles: Активність бінарних сполук ванадію у реакції епоксидування октену-1 і розкладу гідропероксиду трет-бутилу
Authors: Макота, О. І.
Комаренська, З. М.
Олійник, Л. П.
Булгакова, Л. В.
Кловак, Н. В.
Makota, O.
Komarenska, Z.
Oliynyk, L.
Bulgakova, L.
Klovak, N.
Affiliation: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Bibliographic description (Ukraine): Aсtivity of binary vinadium compounds in reaction of epoxidation of 1-octene and decomposition of tert-butyl hydroperoxide / O. Makota, Z. Komarenska, L. Oliynyk, L. Bulgakova, N. Klovak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Том 3. — № 1. — С. 70–74.
Bibliographic description (International): Aсtivity of binary vinadium compounds in reaction of epoxidation of 1-octene and decomposition of tert-butyl hydroperoxide / O. Makota, Z. Komarenska, L. Oliynyk, L. Bulgakova, N. Klovak // Chemistry, Technology and Application of Substances. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 3. — No 1. — P. 70–74.
Is part of: Chemistry, Technology and Application of Substances, 1 (3), 2020
Issue: 1
Issue Date: 24-Feb-2020
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Lviv
DOI: doi.org/10.23939/ctas2020.01.070
Keywords: епоксидування
каталізатори
ванадійвмісні сполуки
октен-1
гідропероксид трет-бутилу
epoxidation
catalysts
vanadium compounds
1-octene
tert-butyl hydroperoxide
Number of pages: 5
Page range: 70-74
Start page: 70
End page: 74
Abstract: Досліджено вплив ванадійвмісних сполук як каталізаторів на реакцію епоксидування октену-1 гідропероксидом трет-бутилу та розкладу цього гідропероксиду. Показано, що каталітична активність сполук ванадію залежить від природи ліганда, що входить до складу каталізатора. Встановлено, що борид і карбід ванадію є найактивнішими каталізаторами гідропероксидного епоксидування, тоді як V2O5 найактивнішим каталізатором розкладу гідропероксиду трет-бутилу. Найвища селективність утворення 1,2-епоксиоктену спостерігається у разі використання як каталізатора VC.
The influenceof vanadium-containing compounds as catalysts on the reaction of 1-octene epoxidation by tert-butyl hydroperoxide and the decomposition of this hydroperoxide was investigated. It is shown that the catalytic activity of vanadium compounds depends on catalyst ligand nature. It is established that vanadium boride and carbide are the most active catalysts for hydroperoxide epoxidation, while V2O5 is the most active catalyst of tert-butyl hydroxide decomposition. The highest selectivity of 1,2-epoxyoctene formation is observed when VC is used as a catalyst.
URI: http://ena.lp.edu.ua:8080/handle/ntb/56066
Copyright owner: © Національний університет “Львівська політехніка”, 2020
References (Ukraine): 1. Marco-Contelles, J., Molina, M. T., Anjum, S. (2004). Naturallyoccurring cyclohexane epoxides: Sources, biological activitiesand synthesis. Chemical Reviews, 104(6), 2857–2899. doi: 10.1021/cr980013j.
2. Diez, D., Beneitez, M. T., Marcos, I. S., Garrido, N. M., Basabe, P., Urones, J. G. (2002). Regio- and stereoselective ring openingof epoxides. Enantioselective synthesis of 2,3,4-trisubstitutedfive-membered heterocycles. Tetrahedron Asymmetry, 13(6), 639–646. doi: 10.1016/S0957-4166(02)00160–X
3. Yudin, A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley-VCH,Weinheim, Germany. doi: 10.1002/3527607862
4. Xia, Q. H., Ge, H. Q., Ye, C. P., Liu, Z. M., Su K. X. (2005). Advancesin homogeneous and heterogeneous catalytic asymmetricepoxidation. Chemical Reviews, 105(5), 1603–1662. doi: 10.1021/cr0406458. Arends, I. W. C. E., Sheldon, R. A. (2001). Activities and stabilitiesof heterogeneous catalysts in selective liquid phase oxidations:recent developments. Applied Catalysis A, 212(1–2),175-187. doi: 10.1016/S0926-860X(00) 00855-3.
5. Tietze, L. F., Eicher T., Diederichsen U., Speicher A. (2007). Reactions and Syntheses in the Organic Chemistry Laboratory. Wiley-VCH, Weinheim. ISBN: 978-3-527-33814-6.
6. Mirzaee, M., Bahramian, B., Gholizadeh, Ja., Feizi, A., Gholami, R. (2016). Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes.Chemical Engineering Journal, 308, 160–168. doi: 10.1016/j.cej.2016.09.055.
7. Belaidi, N., Bedrane, S., Choukchou-Braham, A., Bachir, R. (2015). Novel vanadium-chromium-bentonite green catalysts for cyclohexene epoxidation. Applied Clay Science, 107, 14–24. doi: 10.1016/j.clay.2015.01.026.
8. Arfaoui, Ji., KhalfallahBoudali, L., Ghorbel, A., (2010). Catalytic epoxidation of allylic alcohol (E)-2- Hexen-1-ol over vanadium supported on unsulfated and sulfated titanium pillared montmorillonite catalysts: Effect of sulfate groups and vanadium loading.Applied Clay Science, 48, 171–178. doi: 10.1016/j.clay.2009.12.005.
9. Noji M., Kondo, H., Yazaki, C.,Yamaguchi, H., Ohkura, S., Takanami, T. (2019). An immobilized vanadiumbinaphthylbishydroxamic acid complex as a reusable catalyst for the asymmetric epoxidation of allylic alcohols. Tetrahedron Letters, 60(23), 1518–1521. doi: 10.1016/j.tetlet.2019.05.013.
10. Yang, L., He, Ji., Zhang, Q., Wang, Y. (2010). Copper-catalyzed propylene epoxidation by oxygen: Significant promoting effect of vanadium on unsupported copper catalyst. Journal of Catalysis, 276(1), 76–84. doi: 10.1016/j.jcat.2010.09.002.
11. Held A., Kowalska-Kuś Jo., Nowińska K., Góra-Marek, K. (2019). Potassium-modified silicasupported vanadium oxide catalysts applied for propene epoxidation. Journal of Catalysis, 347, 21–35. doi: 10.1016/j.jcat.2016.12.001.
12. Milas N. A., Surgenor D. M. (1946). Studies in organic peroxides. VIII. t-Butyl hydroperoxide and di-tbutyl peroxide. Journal of the American Chemical Society, 68(2), 205–208. doi: 10.1021/ja01206a017.
References (International): 1. Marco-Contelles, J., Molina, M. T., Anjum, S. (2004). Naturallyoccurring cyclohexane epoxides: Sources, biological activitiesand synthesis. Chemical Reviews, 104(6), 2857–2899. doi: 10.1021/cr980013j.
2. Diez, D., Beneitez, M. T., Marcos, I. S., Garrido, N. M., Basabe, P., Urones, J. G. (2002). Regio- and stereoselective ring openingof epoxides. Enantioselective synthesis of 2,3,4-trisubstitutedfive-membered heterocycles. Tetrahedron Asymmetry, 13(6), 639–646. doi: 10.1016/S0957-4166(02)00160–X
3. Yudin, A. K. (2006). Aziridines and Epoxides in Organic Synthesis. Wiley-VCH,Weinheim, Germany. doi: 10.1002/3527607862
4. Xia, Q. H., Ge, H. Q., Ye, C. P., Liu, Z. M., Su K. X. (2005). Advancesin homogeneous and heterogeneous catalytic asymmetricepoxidation. Chemical Reviews, 105(5), 1603–1662. doi: 10.1021/cr0406458. Arends, I. W. C. E., Sheldon, R. A. (2001). Activities and stabilitiesof heterogeneous catalysts in selective liquid phase oxidations:recent developments. Applied Catalysis A, 212(1–2),175-187. doi: 10.1016/S0926-860X(00) 00855-3.
5. Tietze, L. F., Eicher T., Diederichsen U., Speicher A. (2007). Reactions and Syntheses in the Organic Chemistry Laboratory. Wiley-VCH, Weinheim. ISBN: 978-3-527-33814-6.
6. Mirzaee, M., Bahramian, B., Gholizadeh, Ja., Feizi, A., Gholami, R. (2016). Acetylacetonate complexes of vanadium and molybdenum supported on functionalized boehmite nano-particles for the catalytic epoxidation of alkenes.Chemical Engineering Journal, 308, 160–168. doi: 10.1016/j.cej.2016.09.055.
7. Belaidi, N., Bedrane, S., Choukchou-Braham, A., Bachir, R. (2015). Novel vanadium-chromium-bentonite green catalysts for cyclohexene epoxidation. Applied Clay Science, 107, 14–24. doi: 10.1016/j.clay.2015.01.026.
8. Arfaoui, Ji., KhalfallahBoudali, L., Ghorbel, A., (2010). Catalytic epoxidation of allylic alcohol (E)-2- Hexen-1-ol over vanadium supported on unsulfated and sulfated titanium pillared montmorillonite catalysts: Effect of sulfate groups and vanadium loading.Applied Clay Science, 48, 171–178. doi: 10.1016/j.clay.2009.12.005.
9. Noji M., Kondo, H., Yazaki, C.,Yamaguchi, H., Ohkura, S., Takanami, T. (2019). An immobilized vanadiumbinaphthylbishydroxamic acid complex as a reusable catalyst for the asymmetric epoxidation of allylic alcohols. Tetrahedron Letters, 60(23), 1518–1521. doi: 10.1016/j.tetlet.2019.05.013.
10. Yang, L., He, Ji., Zhang, Q., Wang, Y. (2010). Copper-catalyzed propylene epoxidation by oxygen: Significant promoting effect of vanadium on unsupported copper catalyst. Journal of Catalysis, 276(1), 76–84. doi: 10.1016/j.jcat.2010.09.002.
11. Held A., Kowalska-Kuś Jo., Nowińska K., Góra-Marek, K. (2019). Potassium-modified silicasupported vanadium oxide catalysts applied for propene epoxidation. Journal of Catalysis, 347, 21–35. doi: 10.1016/j.jcat.2016.12.001.
12. Milas N. A., Surgenor D. M. (1946). Studies in organic peroxides. VIII. t-Butyl hydroperoxide and di-tbutyl peroxide. Journal of the American Chemical Society, 68(2), 205–208. doi: 10.1021/ja01206a017.
Content type: Article
Appears in Collections:Chemistry, Technology and Application of Substances. – 2020. – Vol. 3, No. 1



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.