Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/55961
Title: Dynamics of motion of electron in electrical field
Authors: Tchaban, Vasil
Affiliation: Lviv Polytechnic National University
Bibliographic description (Ukraine): Tchaban V. Dynamics of motion of electron in electrical field / Vasil Tchaban // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 2. — P. 39–42.
Bibliographic description (International): Tchaban V. Dynamics of motion of electron in electrical field / Vasil Tchaban // Measuring Equipment and Metrology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 81. — No 2. — P. 39–42.
Is part of: Вимірювальна техніка та метрологія, 2 (81), 2020
Measuring Equipment and Metrology, 2 (81), 2020
Journal/Collection: Вимірювальна техніка та метрологія
Issue: 2
Issue Date: 24-Feb-2020
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: doi.org/10.23939/istcmtm2020.02.039
Keywords: Coulomb’s law
Law of conservation of the charge
Relativistic velocity
Finite velocity of propagation of an electric field
Dynamics of motion of a free electron in a non-uniform electric field
Number of pages: 4
Page range: 39-42
Start page: 39
End page: 42
Abstract: Nowadays, the function of the law of interaction of moving charged bodies has been taken over entirely by the theory of relativity, being covered by a pseudo slogan about the inability of Galileo transformations. In contrast, the article adapts Coulomb’s law in the case of moving charges in all possible speeds in the usual three-dimensional Euclidean space and physical time. This takes into account the finite speed of propagation of the electric field and the law of conservation of the charge. On this basis, the dynamics of the free motion of an electron in a non-uniform electric field are simulated. For qualitative and quantitative evaluations of the manifestation of the relativistic effect on the dynamics of motion, the duplicate time functions of velocities and coordinates obtained by classical Coulomb’s law are given. Electromechanical analogies of electric and gravitational fields have been made.
URI: http://ena.lp.edu.ua:8080/handle/ntb/55961
Copyright owner: © Національний університет “Львівська політехніка”, 2020
URL for reference material: http://www.decoder.ru/list/all/topic_312/
http://new-idea.kulichki.net/pubfiles/151026192403.pdf
References (Ukraine): [1] H. Poincare. About science. Moscow, Russia: Science, 1983 (In Russian).
[2] S. Karavashkin, “On the curvature of space-time”. Proceedings of the Selfie, pp. 1–8, 2017. [Online] Available: http://www.decoder.ru/list/all/topic_312/.
[3] K. S. Demirchyan. A moving charge in four-dimensional space by Maxwell and Einstein. Moscow, Russia: Comtech-Print, 2008.
[4] G. Ivchenkov. “Force interaction of moving charges between themselves and with the fields. “Relativistic” law of Coulomb”. http://new-idea.kulichki.net/pubfiles/151026192403.pdf
[5] V. Tchaban. Non-standard problems of electricity, mechanics, philosophy. Lviv, Ukraine: Space M, 2019.
[6] A. Logunov, M. A. Mestriashvili, and VA Petrov. How were the Hilbert-Einstein equations discovered?: IFVE Preprint 2004-7. Protvino, Russia: 2004.
[7] R. F. Feynman., R. B. Leighton, M. Sands. The Feinman lectures on Physics. Massachusetts, Palo Alto, London, USA: Addison-Wesley publ. comp., inc. reading, 1964.
References (International): [1] H. Poincare. About science. Moscow, Russia: Science, 1983 (In Russian).
[2] S. Karavashkin, "On the curvature of space-time". Proceedings of the Selfie, pp. 1–8, 2017. [Online] Available: http://www.decoder.ru/list/all/topic_312/.
[3] K. S. Demirchyan. A moving charge in four-dimensional space by Maxwell and Einstein. Moscow, Russia: Comtech-Print, 2008.
[4] G. Ivchenkov. "Force interaction of moving charges between themselves and with the fields. "Relativistic" law of Coulomb". http://new-idea.kulichki.net/pubfiles/151026192403.pdf
[5] V. Tchaban. Non-standard problems of electricity, mechanics, philosophy. Lviv, Ukraine: Space M, 2019.
[6] A. Logunov, M. A. Mestriashvili, and VA Petrov. How were the Hilbert-Einstein equations discovered?: IFVE Preprint 2004-7. Protvino, Russia: 2004.
[7] R. F. Feynman., R. B. Leighton, M. Sands. The Feinman lectures on Physics. Massachusetts, Palo Alto, London, USA: Addison-Wesley publ. comp., inc. reading, 1964.
Content type: Article
Appears in Collections:Вимірювальна техніка та метрологія. – 2020. – Випуск 81, №2



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.