Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/55786
Title: n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite
Other Titles: Ізомеризація н-гексану на нікельвмісному цеоліті типу морденіту
Authors: Patrylak, Lyubov
Krylova, Mariya
Pertko, Oleksandra
Voloshyna, Yuliya
Yakovenko, Angela
Affiliation: V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of National Academy of Sciences of Ukraine
Bibliographic description (Ukraine): n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite / Lyubov Patrylak, Mariya Krylova, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 234–238.
Bibliographic description (International): n-Hexane Isomerization Over Nickel-Containing Mordenite Zeolite / Lyubov Patrylak, Mariya Krylova, Oleksandra Pertko, Yuliya Voloshyna, Angela Yakovenko // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 2. — P. 234–238.
Is part of: Chemistry & Chemical Technology, 2 (14), 2020
Issue: 2
Volume: 14
Issue Date: 24-Jan-2020
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: doi.org/10.23939/chcht14.02.234
Keywords: ізомеризація н-гексану
цеоліт типу морденіту
нікель
паладій
активність
селективність
n-hexane isomerization
mordenite zeolite
activity
nickel
palladium
activity
selectivity
Number of pages: 5
Page range: 234-238
Start page: 234
End page: 238
Abstract: Синтезовано зразки нікельвмісного морденіту внаслідок просочування із водних розчинів нітрату нікелю. З використанням методу низькотемпературної адсорбції/ десорбції азоту та мікроімпульсної ізомеризації н-гексану вивчено пористі та каталітичні властивості. За температур 523–573 К максимальні виходи ізомерів становлять 10-12 % мас. для вмісту Ni 1–5 % мас.
Nickel-containing mordenite samples were synthesized by impregnation from aqua's solution of nickel nitrate. Porous and catalytic characteristics of the catalysts were studied by means of low temperature nitrogen adsorption/desorption and micropulse n-hexane isomerisation. The maximum isomer yields are 10-12 wt % for 1-5 wt % Ni content at 523–573 K.
URI: http://ena.lp.edu.ua:8080/handle/ntb/55786
Copyright owner: © Національний університет “Львівська політехніка”, 2020
© Patrylak L, Krylova M., Pertko O., Voloshyna Yu., Yakovenko A., 2020
URL for reference material: https://doi.org/10.1039/C3CS60394F
https://doi.org/10.1016/j.jcat.2015.12.009
https://doi.org/10.1016/j.petlm.2017.02.001
https://doi.org/10.1007/s10562-013-0973-y
https://doi.org/10.1080/23312009.2018.1514686
https://doi.org/10.1515/ijcre-2015-0052
https://doi.org/10.1166/apm.2017.1127
https://doi.org/10.1166/jnn.2015.8328
https://doi.org/10.1177/026361749901700205
https://doi.org/10.1007/s11237-005-0035-7
https://doi.org/10.1016/j.cattod.2005.07.056
https://doi.org/10.1016/j.apcata.2006.09.039
https://doi.org/10.1016/j.cattod.2011.02.031
https://doi.org/10.4236/mrc.2013.24017
https://doi.org/10.1007/s10934-018-0685-1
https://doi.org/10.1260/0263617001493512
https://doi.org/10.1007/s11237-013-9308-8
https://doi.org/10.1007/s11237-011-9205-y
https://doi.org/10.1023/A:1025729530977
https://doi.org/10.1260/0263617011494376
http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf
References (Ukraine): [1] Primo A., Garcia H.: Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/C3CS60394F
[2] Liu S., Ren J., Zhang H. et al.: J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009
[3] Dhar A., Vekariya R., Sharma P.: Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001
[4] Izutsu Y., Oku Y., Hidaka Y. et al.: Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y
[5] Ghouri A., Usman M.: J. Chem. Soc. Pak., 2017, 39, 919.
[6] Dhar A., Vekariya R., Bhadja P.: Cogent Chem., 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686
[7] Dhar A., Dutta A., Castillo-Araiza C. et al.: Int. J. Chem. Reactor Eng., 2016, 14, 795. https://doi.org/10.1515/ijcre-2015-0052
[8] Tamizhdurai P., Lavanya M., Meenakshisundaram A. et al.: Adv. Por. Mater., 2017, 5, 169. https://doi.org/10.1166/apm.2017.1127
[9] Yun S., Seong M., Park Y. et al.: J. Nanosci. Nanotechnol., 2015, 15, 647. https://doi.org/10.1166/jnn.2015.8328
[10] Patrylak L.: Adsortp. Sci. Technol., 1999, 17, 115. https://doi.org/10.1177/026361749901700205
[11] Brei V.: Theor. Experim. Chem., 2005, 41, 165. https://doi.org/10.1007/s11237-005-0035-7
[12] Yoshioka C., Garetto T., Cardoso D.: Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056
[13]Jordao M., Simoes V., Cardoso D.: Appl. Catal. A, 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039
[14] Lima P., Garetto T., Cavalcante C.L.Jr. et al.: Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031
[15] Martins G., dos Santos E., Rodrigues M. et al.: Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017
[16] Patrylak L., Krylova M., Pertko O. et al.: J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1
[17] Patrylak L.: Adsorp. Sci. Technol., 2000, 18, 399. https://doi.org/10.1260/0263617001493512
[18] Patrylak K.,, Patrylak L.,, Repetskyi I.: Theor. Experim. Chem., 2013, 49, 143. https://doi.org/10.1007/s11237-013-9308-8
[19] Patrylak K., Patrylak L., Voloshyna Yu. et al.: Theor. Experim. Chem., 2011, 47, 205. https://doi.org/10.1007/s11237-011-9205-y
[20] Patrylak L., Manza I., Vypirailenko V. et al.: Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977
[21] Rouquerol F., Rouquerol J., Sing K.: Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. Academic Press, San Diego 1999.
[22] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al.: Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376
[23] Patrylak L.: Zh. Phys. Khim., 2005, 79, 1658.
[24] Smail H., Shareef K., Ramli Z.: Austral. J. Bas. Appl. Sci., 2017, 11, 27. http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf
References (International): [1] Primo A., Garcia H., Chem. Soc. Rev., 2014, 43, 7548. https://doi.org/10.1039/P.3CS60394F
[2] Liu S., Ren J., Zhang H. et al., J. Catal., 2016, 335, 11. https://doi.org/10.1016/j.jcat.2015.12.009
[3] Dhar A., Vekariya R., Sharma P., Petroleum, 2017, 3, 489. https://doi.org/10.1016/j.petlm.2017.02.001
[4] Izutsu Y., Oku Y., Hidaka Y. et al., Catal. Lett., 2013, 143, 486. https://doi.org/10.1007/s10562-013-0973-y
[5] Ghouri A., Usman M., J. Chem. Soc. Pak., 2017, 39, 919.
[6] Dhar A., Vekariya R., Bhadja P., Cogent Chem., 2018, 4, 1514686. https://doi.org/10.1080/23312009.2018.1514686
[7] Dhar A., Dutta A., Castillo-Araiza C. et al., Int. J. Chem. Reactor Eng., 2016, 14, 795. https://doi.org/10.1515/ijcre-2015-0052
[8] Tamizhdurai P., Lavanya M., Meenakshisundaram A. et al., Adv. Por. Mater., 2017, 5, 169. https://doi.org/10.1166/apm.2017.1127
[9] Yun S., Seong M., Park Y. et al., J. Nanosci. Nanotechnol., 2015, 15, 647. https://doi.org/10.1166/jnn.2015.8328
[10] Patrylak L., Adsortp. Sci. Technol., 1999, 17, 115. https://doi.org/10.1177/026361749901700205
[11] Brei V., Theor. Experim. Chem., 2005, 41, 165. https://doi.org/10.1007/s11237-005-0035-7
[12] Yoshioka C., Garetto T., Cardoso D., Catal. Today, 2005, 107-108, 693. https://doi.org/10.1016/j.cattod.2005.07.056
[13]Jordao M., Simoes V., Cardoso D., Appl. Catal. A, 2007, 319, 1. https://doi.org/10.1016/j.apcata.2006.09.039
[14] Lima P., Garetto T., Cavalcante C.L.Jr. et al., Catal. Today, 2011, 172, 195. https://doi.org/10.1016/j.cattod.2011.02.031
[15] Martins G., dos Santos E., Rodrigues M. et al., Modern Res. Catal., 2013, 2, 119. https://doi.org/10.4236/mrc.2013.24017
[16] Patrylak L., Krylova M., Pertko O. et al., J. Porous Mater., 2019, 26, 861. https://doi.org/10.1007/s10934-018-0685-1
[17] Patrylak L., Adsorp. Sci. Technol., 2000, 18, 399. https://doi.org/10.1260/0263617001493512
[18] Patrylak K.,, Patrylak L.,, Repetskyi I., Theor. Experim. Chem., 2013, 49, 143. https://doi.org/10.1007/s11237-013-9308-8
[19] Patrylak K., Patrylak L., Voloshyna Yu. et al., Theor. Experim. Chem., 2011, 47, 205. https://doi.org/10.1007/s11237-011-9205-y
[20] Patrylak L., Manza I., Vypirailenko V. et al., Theor. Experim. Chem., 2003, 39, 263. https://doi.org/10.1023/A:1025729530977
[21] Rouquerol F., Rouquerol J., Sing K., Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. Academic Press, San Diego 1999.
[22] Patrylak L., Likhnyovskyi R., Vypyraylenko V. et al., Adsorpt. Sci. Technol., 2001, 19, 525. https://doi.org/10.1260/0263617011494376
[23] Patrylak L., Zh. Phys. Khim., 2005, 79, 1658.
[24] Smail H., Shareef K., Ramli Z., Austral. J. Bas. Appl. Sci., 2017, 11, 27. http://www.ajbasweb.com/old/ajbas/2017/January/27-34.pdf
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 2



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.