Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/55777
Title: The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification
Other Titles: Плазма-ініційоване одержання покритих пвп наночастинок срібла та їх застосування для очищення води
Authors: Skiba, Margarita
Pivovarov, Alexander
Vorobyova, Viktoria
Affiliation: Ukrainian State University of Chemical Technology
National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"
Bibliographic description (Ukraine): Skiba M. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification / Margarita Skiba, Alexander Pivovarov, Viktoria Vorobyova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 47–54.
Bibliographic description (International): Skiba M. The Plasma-Induced Formation of PVP-Coated Silver Nanoparticles and Usage in Water Purification / Margarita Skiba, Alexander Pivovarov, Viktoria Vorobyova // Chemistry & Chemical Technology. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 14. — No 1. — P. 47–54.
Is part of: Chemistry & Chemical Technology, 1 (14), 2020
Issue: 1
Issue Date: 24-Jan-2020
Publisher: Видавництво Львівської політехніки
Lviv Politechnic Publishing House
Place of the edition/event: Львів
Lviv
DOI: doi.org/10.23939/chcht14.01.047
Keywords: наночастинки срібла
плазма
полівінілпіролідон
композитний матеріал
антибактеріальний
silver nanoparticles
plasma
poly(N-vinylpyrrolidone)
composite materials
antibacterial
Number of pages: 8
Page range: 47-54
Start page: 47
End page: 54
Abstract: За допомогою контактної нерівноважної низькотемпературної плазми одержані наночастинки срібла (AgНЧ) із застосуванням полівінілпіролідону (ПВП) як стабілізуючого агенту. Вивчено вплив концентрації ПВП на ефективність формування наночастинок срібла, їх середній розмір та стабільність. Встановлено, що одержані наночастинки срібла проявляють антибактеріальну активність проти двох штамів грам-бактерій. Одержано композитні гранули (AgНЧальгінат) з різною концентрацією ПВП для очищення води.
The contact non-equilibrium low-temperature plasma technique is used to synthesize silver nanoparticles (AgNPs) employing polyvinyl pyrrolidone (PVP) as a capping agent. Influences of PVP concentration on the formation efficiency of silver nanoparticle, their average size and stability have been studied. The synthesized silver nanoparticles had a significant antibacterial activity against two strains of Gram bacteria. Silver nanoparticles (AgNPs)-alginate composite beads with different PVP concentration were synthesized as materials for water purification.
URI: http://ena.lp.edu.ua:8080/handle/ntb/55777
Copyright owner: © Національний університет “Львівська політехніка”, 2020
© Skiba M., Pivovarov A., Vorobyova V., 2020
URL for reference material: https://doi.org/10.1016/j.jece.2017.11.053
https://doi.org/10.1007/s10853-017-1501-z
https://doi.org/10.1021/am3022569
https://doi.org/10.1016/j.snb.2017.01.038
https://doi.org/10.3390/molecules20058856
https://doi.org/10.1155/2015/123696
https://doi.org/10.1134/s1070363215050497
https://doi.org/10.15587/1729-4061.2017.118914
https://doi.org/10.15587/1729-4061.2018.127103
https://doi.org/10.19261cjm.2018.475
https://doi.org/10.1016/j.nanoso.2017.12.008
https://doi.org/10.1177/1847980417752849
https://doi.org/10.1021/jp4112712
https://doi.org/10.1186/2228-5326-3-19
https://doi.org/10.1007/s40097-016-0212-3
https://doi.org/10.1016/j.matlet.2006.11.064
https://doi.org/10.1039/C5DT02964C
https://doi.org/10.3390/ijerph9010244
https://doi.org/10.1021/cm021804b
https://doi.org/10.23939/chcht10.02.187
https://doi.org/10.1016/j.msec.2012.05.016
https://doi.org/10.1016/j.watres.2018.03.048
https://doi.org/10.1016/j.electacta.2005.04.071
https://doi.org/10.1007/s11468-016-0495-8
https://doi.org/10.1016/j.biomaterials.2005.05.040
https://doi.org/10.1007/s11468-009-9120-4
https://doi.org/10.1016/j.colsurfb.2011.07.041
https://doi.org/10.1039/B914875B
https://doi.org/10.1016/B978-0-323-46152-8.00026-3
https://doi.org/10.1088/0957-4484/22/27/275708
References (Ukraine): [1] Sudhakar P., Soni H.: J. Environ. Chem. Eng., 2018, 6, 28. https://doi.org/10.1016/j.jece.2017.11.053
[2] Tao L., Lou Y., Zhao Y. et al.: J. Mater. Sci., 2018, 53, 573. https://doi.org/10.1007/s10853-017-1501-z
[3] Alshehri A., Jakubowska M., Młożniak A. et al.: Appl. Mater. Interfaces, 2012, 4, 7007. https://doi.org/10.1021/am3022569
[4] Deepak S., Niladri S., Gyanaranjan S. et al.: Sensor Actuator B, 2017, 246, 96. https://doi.org/10.1016/j.snb.2017.01.038
[5] Franci G., Falanga A., Galdiero S. et al.: Molecules, 2015, 20, 8856. https://doi.org/10.3390/molecules20058856
[6] Iravani S., Korbekandi H., Mir Mohammadi S., Zolfaghari B.: Res. Pharm. Sci., 2014, 9, 385.
[7] Saito G., Akiyama T.: J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696
[8] Pivovarov A., Kravchenko A., Tishchenko A. et al.: Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497
[9] Skiba M., Pivovarov A., Makarova A. et al.: East.-Eur. J. Enterpr. Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914
[10] Pivovarov О., Skіba М., Makarova А. et al.: Voprosy Khim. Khim. Tekhnol., 2017, 6, 82.
[11] Skiba M., Pivovarov A., Makarova A., Vorobyova V.: East.- Eur. J. Enterpr. Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103
[12] Skiba M., Pivovarov A., Makarova A., Vorobyova V.: Сhem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475
[13] Skіba М., Pivovarov О., Makarova А., Parkhomenko V.: Voprosy Khim. Khim. Tekhnol., 2018, 3, 113.
[14] Muthivhi R., Parani B., Oluwafemi M.: Nano-Struct. NanoObjects, 2018, 13, 132. https://doi.org/10.1016/j.nanoso.2017.12.008
[15] El Hotaby W., Sherif H., Hemdan B. et al.: Acta Physica Polonica A, 2017, 131, 1554.
[16] Tseng K., Chou C., Liu T. et al.: Adv. Mat. Sci. Eng., 2018, 8, 1. https://doi.org/10.1177/1847980417752849
[17] Bharati V., Xavier P., Kar G. et al.: J. Phys. Chem. B, 2014, 118, 2214. https://doi.org/10.1021/jp4112712
[18] Naseri M., Saion E., Zadeh N.: Int. Nano Lett., 2013, 3, 19. https://doi.org/10.1186/2228-5326-3-19
[19] Mirzaei A., Janghorban K., Hashemi B. et al.: J. Nanostruct. Chem., 2017, 7, 37. https://doi.org/10.1007/s40097-016-0212-3
[20] Khanna P., Singh N., Kulkarni D. et al.: Mater. Lett., 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064
[21] Koczkur K., Mourdikoudis S., Polavarapu L., Skrabalak S.: Dalton Trans., 2015, 44, 17883. https://doi.org/10.1039/C5DT02964C
[22] Mpenyana-Monyatsi L., Mthombeni N., Onyango M., Momba M.: Int. J. Environ. Res. Public. Health, 2012, 9, 244. https://doi.org/10.3390/ijerph9010244
[23] Magdassi S., Bassa A., Vinetsky Y., Kamyshny A.: Chem. Mater., 2003, 15, 2208. https://doi.org/10.1021/cm021804b
[24] Skorokhoda V., Semenyuk N., Dziaman L., Suberlyak O.: Chem. Chem. Technol., 2016, 10, 187. https://doi.org/10.23939/chcht10.02.187
[25] Skorokhoda V., Semenyuk N., Dziaman I. et al.: Voprosy Khim. Khim. Tekhnol., 2018, 2, 101.
[26] Pencheva D., Bryaskova R., Kantardjiev T.: Mat. Sci. Eng. C, 2012, 32, 2048. https://doi.org/10.1016/j.msec.2012.05.016
[27] Wang X., Fan W., Dong Z. et al.: Water Res., 2018, 138, 224. https://doi.org/10.1016/j.watres.2018.03.048
[28] Cho K., Park J., Osaka T., Park S.: Electrochim. Acta, 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071
[29] Saliminasab M., Garaei M., Moradian R. et al.: Plasmonics, 2018, 13, 155. https://doi.org/10.1007/s11468-016-0495-8
[30] Taylor P., Ussher A., Burrell R.: Biomaterials, 2005, 26, 7221. https://doi.org/10.1016/j.biomaterials.2005.05.040
[31] Amendola V., Bakr O., Stellacci F.: Plasmonics, 2010, 5, 85. https://doi.org/10.1007/s11468-009-9120-4
[32] Lee H., Lee S., Oh E. et al.: J. Coll. Surf. B, 2011, 88, 505. https://doi.org/10.1016/j.colsurfb.2011.07.041
[33] Kitller S., Greulich G., Gebauer J. et al.: J. Mat. Chem., 2010, 20, 512. https://doi.org/10.1039/B914875B
[34] Silva L., Silveira A., Bonatto C. et al.: Chapter 26 - Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future [in:] Nanostructures for Antimicrobial Therapy. Elsevier 2017, 577-596. https://doi.org/10.1016/B978-0-323-46152-8.00026-3
[35] Kiss F., Miotto R., Ferraz A.: Nanotechnology, 2011, 22, 275708. https://doi.org/10.1088/0957-4484/22/27/275708
References (International): [1] Sudhakar P., Soni H., J. Environ. Chem. Eng., 2018, 6, 28. https://doi.org/10.1016/j.jece.2017.11.053
[2] Tao L., Lou Y., Zhao Y. et al., J. Mater. Sci., 2018, 53, 573. https://doi.org/10.1007/s10853-017-1501-z
[3] Alshehri A., Jakubowska M., Młożniak A. et al., Appl. Mater. Interfaces, 2012, 4, 7007. https://doi.org/10.1021/am3022569
[4] Deepak S., Niladri S., Gyanaranjan S. et al., Sensor Actuator B, 2017, 246, 96. https://doi.org/10.1016/j.snb.2017.01.038
[5] Franci G., Falanga A., Galdiero S. et al., Molecules, 2015, 20, 8856. https://doi.org/10.3390/molecules20058856
[6] Iravani S., Korbekandi H., Mir Mohammadi S., Zolfaghari B., Res. Pharm. Sci., 2014, 9, 385.
[7] Saito G., Akiyama T., J. Nanomater., 2015, 16, 1. https://doi.org/10.1155/2015/123696
[8] Pivovarov A., Kravchenko A., Tishchenko A. et al., Russ. J. Gen. Chem., 2015, 85, 1339. https://doi.org/10.1134/s1070363215050497
[9] Skiba M., Pivovarov A., Makarova A. et al., East.-Eur. J. Enterpr. Technol., 2017, 6, 59. https://doi.org/10.15587/1729-4061.2017.118914
[10] Pivovarov O., Skiba M., Makarova A. et al., Voprosy Khim. Khim. Tekhnol., 2017, 6, 82.
[11] Skiba M., Pivovarov A., Makarova A., Vorobyova V., East, Eur. J. Enterpr. Technol., 2018, 2, 4. https://doi.org/10.15587/1729-4061.2018.127103
[12] Skiba M., Pivovarov A., Makarova A., Vorobyova V., Shem. J. Moldova, 2018, 13, 7. https://doi.org/10.19261cjm.2018.475
[13] Skiba M., Pivovarov O., Makarova A., Parkhomenko V., Voprosy Khim. Khim. Tekhnol., 2018, 3, 113.
[14] Muthivhi R., Parani B., Oluwafemi M., Nano-Struct. NanoObjects, 2018, 13, 132. https://doi.org/10.1016/j.nanoso.2017.12.008
[15] El Hotaby W., Sherif H., Hemdan B. et al., Acta Physica Polonica A, 2017, 131, 1554.
[16] Tseng K., Chou C., Liu T. et al., Adv. Mat. Sci. Eng., 2018, 8, 1. https://doi.org/10.1177/1847980417752849
[17] Bharati V., Xavier P., Kar G. et al., J. Phys. Chem. B, 2014, 118, 2214. https://doi.org/10.1021/jp4112712
[18] Naseri M., Saion E., Zadeh N., Int. Nano Lett., 2013, 3, 19. https://doi.org/10.1186/2228-5326-3-19
[19] Mirzaei A., Janghorban K., Hashemi B. et al., J. Nanostruct. Chem., 2017, 7, 37. https://doi.org/10.1007/s40097-016-0212-3
[20] Khanna P., Singh N., Kulkarni D. et al., Mater. Lett., 2007, 61, 3366. https://doi.org/10.1016/j.matlet.2006.11.064
[21] Koczkur K., Mourdikoudis S., Polavarapu L., Skrabalak S., Dalton Trans., 2015, 44, 17883. https://doi.org/10.1039/P.5DT02964C
[22] Mpenyana-Monyatsi L., Mthombeni N., Onyango M., Momba M., Int. J. Environ. Res. Public. Health, 2012, 9, 244. https://doi.org/10.3390/ijerph9010244
[23] Magdassi S., Bassa A., Vinetsky Y., Kamyshny A., Chem. Mater., 2003, 15, 2208. https://doi.org/10.1021/cm021804b
[24] Skorokhoda V., Semenyuk N., Dziaman L., Suberlyak O., Chem. Chem. Technol., 2016, 10, 187. https://doi.org/10.23939/chcht10.02.187
[25] Skorokhoda V., Semenyuk N., Dziaman I. et al., Voprosy Khim. Khim. Tekhnol., 2018, 2, 101.
[26] Pencheva D., Bryaskova R., Kantardjiev T., Mat. Sci. Eng. C, 2012, 32, 2048. https://doi.org/10.1016/j.msec.2012.05.016
[27] Wang X., Fan W., Dong Z. et al., Water Res., 2018, 138, 224. https://doi.org/10.1016/j.watres.2018.03.048
[28] Cho K., Park J., Osaka T., Park S., Electrochim. Acta, 2005, 51, 956. https://doi.org/10.1016/j.electacta.2005.04.071
[29] Saliminasab M., Garaei M., Moradian R. et al., Plasmonics, 2018, 13, 155. https://doi.org/10.1007/s11468-016-0495-8
[30] Taylor P., Ussher A., Burrell R., Biomaterials, 2005, 26, 7221. https://doi.org/10.1016/j.biomaterials.2005.05.040
[31] Amendola V., Bakr O., Stellacci F., Plasmonics, 2010, 5, 85. https://doi.org/10.1007/s11468-009-9120-4
[32] Lee H., Lee S., Oh E. et al., J. Coll. Surf. B, 2011, 88, 505. https://doi.org/10.1016/j.colsurfb.2011.07.041
[33] Kitller S., Greulich G., Gebauer J. et al., J. Mat. Chem., 2010, 20, 512. https://doi.org/10.1039/B914875B
[34] Silva L., Silveira A., Bonatto C. et al., Chapter 26 - Silver Nanoparticles as Antimicrobial Agents: Past, Present, and Future [in:] Nanostructures for Antimicrobial Therapy. Elsevier 2017, 577-596. https://doi.org/10.1016/B978-0-323-46152-8.00026-3
[35] Kiss F., Miotto R., Ferraz A., Nanotechnology, 2011, 22, 275708. https://doi.org/10.1088/0957-4484/22/27/275708
Content type: Article
Appears in Collections:Chemistry & Chemical Technology. – 2020. – Vol. 14, No. 1



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.