Please use this identifier to cite or link to this item:
http://ena.lp.edu.ua:8080/handle/ntb/55311
Title: | Analysis of saturation flow on isolated lanes of controlled intersections with significant traffic intensity |
Authors: | Murovanyi, Igor Mazyliuk, Pavlo |
Affiliation: | Lutsk National Technical University |
Bibliographic description (Ukraine): | Murovanyi I. Analysis of saturation flow on isolated lanes of controlled intersections with significant traffic intensity / Igor Murovanyi, Pavlo Mazyliuk // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 1. — No 2. — P. 1–12. |
Bibliographic description (International): | Murovanyi I. Analysis of saturation flow on isolated lanes of controlled intersections with significant traffic intensity / Igor Murovanyi, Pavlo Mazyliuk // Transport Technologies. — Lviv : Lviv Politechnic Publishing House, 2020. — Vol 1. — No 2. — P. 1–12. |
Is part of: | Transport Technologies, 2 (1), 2020 |
Issue: | 2 |
Volume: | 1 |
Issue Date: | 14-Sep-2020 |
Publisher: | Видавництво Львівської політехніки Lviv Politechnic Publishing House |
Place of the edition/event: | Львів Lviv |
Keywords: | controlled intersection the time interval between vehicles saturation flow traffic flow traffic delay traffic intensity traffic flow composition roadway traffic light cycle traffic light control road users |
Number of pages: | 12 |
Page range: | 1-12 |
Start page: | 1 |
End page: | 12 |
Abstract: | The methods and results of the investigation of intervals between vehicles during queue dissipation before controlled intersections with the further determination of saturation flow are reviewed in this paper. Having reviewed existing methods of determining the saturation in traffic flows, those are determined which provide the most certain results in conditions of intensive movement and take into account quite a large number of impact factors. Such methods are based on experimental measurement of intervals between vehicles during their passage through the stop-line in different directions of the controlled intersection. For the completeness of the analysis of such intervals, such factors are considered additionally as traffic composition and use of lanes by directions. Objects of the research are controlled intersections on approaches to which the slope is absent, there is no pedestrian and cyclist movement during the performance of turn, and conflicting traffic flows and also public transport stops in the zone of the intersection. The transitional research result is the determination of the number of vehicles that pass the stop-line during the permissive signal and time intervals between them, and the final result is the oncoming of saturation period on the lanes of straight and turns movement depending on traffic flow composition. |
URI: | http://ena.lp.edu.ua:8080/handle/ntb/55311 |
Copyright owner: | © Національний університет “Львівська політехніка”, 2020 © I. Murovanyi, P. Mazyliuk, 2020 |
References (Ukraine): | 1. Levashev, A. H., Mikhailov, A. Yu. & Holovnykh, I. M. (2007). Proektirovanie reguliruemykh peresechnii [Design of controlled intersections]. Irkutsk: IrHTU (in Russian). 2. Wolshon, B., & Pande, A. (2016). Traffic engineering handbook. John Wiley & Sons. (in English). 3. Fornalchyk, Ye. Yu., Hilevych, V. V. & Mohyla, I. A. (2020). Modeliuvannia transportnykh potokiv [Traffic flow modeling]. Lviv: Vudavnytstvo Lvivskoi Politekhniky (in Ukrainian). 4. Gavrylov, E. V., Dmytrychenko, M. F., Dolia, V. K., Lanovyi, O. T., Lynnyk, I. E., & Polishchuk, V. P. (2007). Organizatsiia dorozhnioho rukhu [Traffic organization]. Kyiv: Znannia Ukrainy (in Ukrainian). 5. Kremenets, Yu. A., Pecherskii, M. P. & Afanasiev, M. B. (2005). Tekhnicheskie sredstva organizatsii dorozhnoho dvizhenia [Technical means for traffic organization]. Moskva: Izd-iy tsentr “Akademia” (in Russian). 6. Ji, Y., Tang, Y., Wang, W., & Du, Y. (2018). Tram-Oriented Traffic Signal Timing Resynchronization. Journal of Advanced Transportation. Volume 2018. doi: 10.1155/2018/8796250 (in English). 7. Shi, J., Sun, Y., Schonfeld, P., & Qi, J. (2017). Joint optimization of tram timetables and signal timing adjustments at intersections. Transportation Research Part C: Emerging Technologies. Volume 83. 104–119. doi: 10.1016/j.trc.2017.07.014 (in English). 8. Zhou, L., Wang, Yi., & Liu, Ya. (2017). Active signal priority control method for bus rapid transit based on Vehicle Infrastructure Integration. International Journal of Transportation Science and Technology. Volume 6(2). 99-109. doi: 10.1016/j.ijtst.2017.06.001 (in English). 9. Vrubel, Yu.A. (2003). Poteri v dorozhnem dvizhenii [Losses in traffic]. Minsk: BNTU. (in Russian). 10. Fornalchyk, Ye. Yu., Mohyla, I. A., Trushevskyy, V. E., & Hilevych, V. V. (2018). Upravlinnia dorozhnim rukhom na rehuliovanykh perekhrestiakh u mistakh [Traffic management on controlled intersections in cities]. Lviv: Vudavnytstvo Lvivskoi Politekhniky (in Ukrainian). 11. Vrubel, Yu. A. et al. (2011). Koordinirovannoe upravlenie dorozhnym dvizheniem [Coordinated control of traffic]. Minsk: BNTU (in Russian). 12. Vrubel, Yu. A (2007). Issledovania v dorozhnem dvizhenii: uchebno-metodicheskoe posobie k laboratornym rabotam [Research in traffic: study guide for laboratory work]. Minsk: BNTU (in Russian). 13. Scheffler, R., Strehler, M. (2017). Optimizing traffic signal settings for public transport priority. Proc. of the 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (pp. 9:1–9:15) – Vienna, Austria. doi: 10.4230/OASIcs.ATMOS.2017 (in English). 14. Zhao, J., Li, P., Zheng, Z., & Han, Y. (2018). Analysis of saturation flow rate at tandem intersections using field data. IET Intelligent Transport Systems, Volume 12(5), 394–403. doi: 10.1049/iet-its.2017.0092 (in English). 15. Nguyen, H. D. (2016). Saturation flow rate analysis at signalized intersections for mixed traffic conditions in motorcycle dependent cities. Transportation research procedia, Volume 15, 694-708. doi:10.1016/j.trpro.2016.06.058 (in English). |
References (International): | 1. Levashev, A. H., Mikhailov, A. Yu. & Holovnykh, I. M. (2007). Proektirovanie reguliruemykh peresechnii [Design of controlled intersections]. Irkutsk: IrHTU (in Russian). 2. Wolshon, B., & Pande, A. (2016). Traffic engineering handbook. John Wiley & Sons. (in English). 3. Fornalchyk, Ye. Yu., Hilevych, V. V. & Mohyla, I. A. (2020). Modeliuvannia transportnykh potokiv [Traffic flow modeling]. Lviv: Vudavnytstvo Lvivskoi Politekhniky (in Ukrainian). 4. Gavrylov, E. V., Dmytrychenko, M. F., Dolia, V. K., Lanovyi, O. T., Lynnyk, I. E., & Polishchuk, V. P. (2007). Organizatsiia dorozhnioho rukhu [Traffic organization]. Kyiv: Znannia Ukrainy (in Ukrainian). 5. Kremenets, Yu. A., Pecherskii, M. P. & Afanasiev, M. B. (2005). Tekhnicheskie sredstva organizatsii dorozhnoho dvizhenia [Technical means for traffic organization]. Moskva: Izd-iy tsentr "Akademia" (in Russian). 6. Ji, Y., Tang, Y., Wang, W., & Du, Y. (2018). Tram-Oriented Traffic Signal Timing Resynchronization. Journal of Advanced Transportation. Volume 2018. doi: 10.1155/2018/8796250 (in English). 7. Shi, J., Sun, Y., Schonfeld, P., & Qi, J. (2017). Joint optimization of tram timetables and signal timing adjustments at intersections. Transportation Research Part C: Emerging Technologies. Volume 83. 104–119. doi: 10.1016/j.trc.2017.07.014 (in English). 8. Zhou, L., Wang, Yi., & Liu, Ya. (2017). Active signal priority control method for bus rapid transit based on Vehicle Infrastructure Integration. International Journal of Transportation Science and Technology. Volume 6(2). 99-109. doi: 10.1016/j.ijtst.2017.06.001 (in English). 9. Vrubel, Yu.A. (2003). Poteri v dorozhnem dvizhenii [Losses in traffic]. Minsk: BNTU. (in Russian). 10. Fornalchyk, Ye. Yu., Mohyla, I. A., Trushevskyy, V. E., & Hilevych, V. V. (2018). Upravlinnia dorozhnim rukhom na rehuliovanykh perekhrestiakh u mistakh [Traffic management on controlled intersections in cities]. Lviv: Vudavnytstvo Lvivskoi Politekhniky (in Ukrainian). 11. Vrubel, Yu. A. et al. (2011). Koordinirovannoe upravlenie dorozhnym dvizheniem [Coordinated control of traffic]. Minsk: BNTU (in Russian). 12. Vrubel, Yu. A (2007). Issledovania v dorozhnem dvizhenii: uchebno-metodicheskoe posobie k laboratornym rabotam [Research in traffic: study guide for laboratory work]. Minsk: BNTU (in Russian). 13. Scheffler, R., Strehler, M. (2017). Optimizing traffic signal settings for public transport priority. Proc. of the 17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (pp. 9:1–9:15) – Vienna, Austria. doi: 10.4230/OASIcs.ATMOS.2017 (in English). 14. Zhao, J., Li, P., Zheng, Z., & Han, Y. (2018). Analysis of saturation flow rate at tandem intersections using field data. IET Intelligent Transport Systems, Volume 12(5), 394–403. doi: 10.1049/iet-its.2017.0092 (in English). 15. Nguyen, H. D. (2016). Saturation flow rate analysis at signalized intersections for mixed traffic conditions in motorcycle dependent cities. Transportation research procedia, Volume 15, 694-708. doi:10.1016/j.trpro.2016.06.058 (in English). |
Content type: | Article |
Appears in Collections: | Transport Technologies. – 2020. – Vol. 1, No. 2 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2020v1n2_Murovanyi_I-Analysis_of_saturation_flow_1-12.pdf | 1,51 MB | Adobe PDF | View/Open | |
2020v1n2_Murovanyi_I-Analysis_of_saturation_flow_1-12__COVER.png | 437,72 kB | image/png | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.