Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/51808
Title: Degradable poly (ester ether) urethanes (PEEURs) as a novelmaterials for bone tissue engineering
Authors: Lewandowska, A.
Gubanska, I.
Kucińska-Lipka, J.
Affiliation: Gdansk University of Technology
Bibliographic description (Ukraine): Lewandowska A. Degradable poly (ester ether) urethanes (PEEURs) as a novelmaterials for bone tissue engineering / A. Lewandowska, I. Gubanska, J. Kucińska-Lipka // Поступ в нафтогазопереробній та нафтохімічній промисловості : матеріали IX Міжнародної науково-технічної конференції, 14–18 травня 2018 року, Львів. — Львів : Видавництво Львівської політехніки, 2018. — С. 360–362. — (Стендова сесія).
Bibliographic description (International): Lewandowska A. Degradable poly (ester ether) urethanes (PEEURs) as a novelmaterials for bone tissue engineering / A. Lewandowska, I. Gubanska, J. Kucińska-Lipka // Advance in Petroleum and Gas Industry and Petrochemistry, 14–18 travnia 2018 roku, Lviv. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — P. 360–362. — (Poster presentations).
Is part of: Поступ в нафтогазопереробній та нафтохімічній промисловості : матеріали IX Міжнародної науково-технічної конференції, 2018
Advance in Petroleum and Gas Industry and Petrochemistry, 2018
Conference/Event: IX Міжнародна науково-технічна конференція "Поступ в нафтогазопереробній та нафтохімічній промисловості"
Journal/Collection: Поступ в нафтогазопереробній та нафтохімічній промисловості : матеріали IX Міжнародної науково-технічної конференції
Issue Date: 14-May-2018
Publisher: Видавництво Львівської політехніки
Place of the edition/event: Львів
Lviv
Temporal Coverage: 14–18 травня 2018 року, Львів
Keywords: bone tissue engineering
degradation
poly (ester ether) urethanes
Number of pages: 3
Page range: 360-362
Start page: 360
End page: 362
Abstract: The bones possess unique ability to self-healing, but this process is prolonged and troublesome for patient. Therefore, it is important to develop bone substitutes, which will provide effective bone regeneration. Tissue engineering (TE) it is the field, which makes it possible. Among many materials used for TE polyurethanes (PURs) seem to be one of the most substitutes for this purpose, because they are biocompatible, hemocompatible, undergo calcification and biodegradation. In this study we report poly(ester ether urethane)s (PEEURs) containing 28% of hard segments (HS), which undergo slow degradation and calcification – necessary for bone regeneration, and their mechanical properties are comparable to native bone tissue.
URI: http://ena.lp.edu.ua:8080/handle/ntb/51808
ISBN: 978-966-941-170-9
Copyright owner: © Національний університет “Львівська політехніка”, 2018
URL for reference material: http://www.nature.com/articles/s41598-017-18375-x
http://avs.scitation.org/doi/10.1116/1.3431524
References (Ukraine): [1] Russo A, Bianchi M, Sartori M, Boi M, Giavaresi G, Salter DM, et al. Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds. J Biomed Mater Res - Part B Appl Biomater. 2017;546–54.
[2] Chen T, Li J, Córdova LA, Liu B, Mouraret S, Sun Q, et al. A WNT protein therapeutic improves the boneforming capacity of autografts from aged animals. Sci Rep [Internet]. 2018;8(1):119. Available from: http://www.nature.com/articles/s41598-017-18375-x
[3] Kucińska-Lipka, J.; Marzec, M.; Gubańska, I.; Janik H. Porosity and swelling properties of novel polyurethane– ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering. J Elastomers Plast. 2017;49(5):440–56.
[4] Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H. Development of polyurethanes for bone repair. Mater Sci Eng C. 2017;80(June 2016):736–47.
[5] Kucińska-Lipka J, Gubanska I, Korchynskyi O, Malysheva K, Kostrzewa M. The influence of calcium glycerophosphate ( GPCa ) modifier on physicochemical , mechanical and biological performance of polyurethanes applicable as biomaterials for bone tissue scaffolds fabrication. 2017;1–23.
[6] Renata NG, Custódio R, Rennó Márcio MAC. Natural marine sponges for bone tissue engineering: The state of art and future perspectives. J Biomed Mater Res Part B. 2017;1717–27.
[7] Gorna K, Gogolewski S. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(??-caprolactone)-poly(ethylene oxide) diols and various chain extenders. J Biomed Mater Res. 2002;60(4):592–606.
[8] Stefan Oprea. Degradation of Crosslinked Poly(ester-urethanes)Elastomers in Distilled Water: Influence of Hard Segment. J Appl Polym Sci. 2012;124:1059–66.
[9] Gautam R, Bassi AS, Yanful EK. Candida rugosa lipase-catalyzed polyurethane degradation in aqueous medium. Biotechnol Lett. 2007;29(7):1081–6.
[10] Kommareddy KP, Lange C, Rumpler M, Dunlop JWC, Manjubala I, Cui J, et al. Two stages in threedimensional in vitro growth of tissue generated by osteoblastlike cells. Biointerphases [Internet]. 2010;5(2):45–52. Available from: http://avs.scitation.org/doi/10.1116/1.3431524
References (International): [1] Russo A, Bianchi M, Sartori M, Boi M, Giavaresi G, Salter DM, et al. Bone regeneration in a rabbit critical femoral defect by means of magnetic hydroxyapatite macroporous scaffolds. J Biomed Mater Res - Part B Appl Biomater. 2017;546–54.
[2] Chen T, Li J, Córdova LA, Liu B, Mouraret S, Sun Q, et al. A WNT protein therapeutic improves the boneforming capacity of autografts from aged animals. Sci Rep [Internet]. 2018;8(1):119. Available from: http://www.nature.com/articles/s41598-017-18375-x
[3] Kucińska-Lipka, J.; Marzec, M.; Gubańska, I.; Janik H. Porosity and swelling properties of novel polyurethane– ascorbic acid scaffolds prepared by different procedures for potential use in bone tissue engineering. J Elastomers Plast. 2017;49(5):440–56.
[4] Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H. Development of polyurethanes for bone repair. Mater Sci Eng P. 2017;80(June 2016):736–47.
[5] Kucińska-Lipka J, Gubanska I, Korchynskyi O, Malysheva K, Kostrzewa M. The influence of calcium glycerophosphate ( GPCa ) modifier on physicochemical , mechanical and biological performance of polyurethanes applicable as biomaterials for bone tissue scaffolds fabrication. 2017;1–23.
[6] Renata NG, Custódio R, Rennó Márcio MAC. Natural marine sponges for bone tissue engineering: The state of art and future perspectives. J Biomed Mater Res Part B. 2017;1717–27.
[7] Gorna K, Gogolewski S. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly(??-caprolactone)-poly(ethylene oxide) diols and various chain extenders. J Biomed Mater Res. 2002;60(4):592–606.
[8] Stefan Oprea. Degradation of Crosslinked Poly(ester-urethanes)Elastomers in Distilled Water: Influence of Hard Segment. J Appl Polym Sci. 2012;124:1059–66.
[9] Gautam R, Bassi AS, Yanful EK. Candida rugosa lipase-catalyzed polyurethane degradation in aqueous medium. Biotechnol Lett. 2007;29(7):1081–6.
[10] Kommareddy KP, Lange C, Rumpler M, Dunlop JWC, Manjubala I, Cui J, et al. Two stages in threedimensional in vitro growth of tissue generated by osteoblastlike cells. Biointerphases [Internet]. 2010;5(2):45–52. Available from: http://avs.scitation.org/doi/10.1116/1.3431524
Content type: Conference Abstract
Appears in Collections:IX Міжнародна науково-технічна конференція "Поступ в нафтогазопереробній та нафтохімічній промисловості". – 2018 р.

Files in This Item:
File Description SizeFormat 
2018_Lewandowska_A-Degradable_poly_ester_360-362.pdf141,34 kBAdobe PDFView/Open
2018_Lewandowska_A-Degradable_poly_ester_360-362__COVER.png501,79 kBimage/pngView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.