Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ena.lp.edu.ua:8080/handle/ntb/46918
Назва: Software-algorithmic support of finite-element analysis of spatial thermovalentranslations in anisotropic capillary-porous materials
Інші назви: Програмно-алгоритмічне забезпечення скінченноелементного аналізу просторового тепловологоперенесення в анізотропних капілярно-пористих матеріалах
Автори: Sokolovskyy, Y.
Nechepurenko, A.
Приналежність: National Forestry and Wood Technology University of Ukraine
Бібліографічний опис: Sokolovskyy Y. Software-algorithmic support of finite-element analysis of spatial thermovalentranslations in anisotropic capillary-porous materials / Y. Sokolovskyy, A. Nechepurenko // Вісник Національного університету “Львівська політехніка”. Серія: Комп’ютерні системи проектування теорія і практика. — Львів : Видавництво Львівської політехніки, 2018. — № 908. — С. 65–74.
Bibliographic description: Sokolovskyy Y. Software-algorithmic support of finite-element analysis of spatial thermovalentranslations in anisotropic capillary-porous materials / Y. Sokolovskyy, A. Nechepurenko // Visnyk Natsionalnoho universytetu "Lvivska politekhnika". Serie: Kompiuterni systemy proektuvannia teoriia i praktyka. — Lviv : Vydavnytstvo Lvivskoi politekhniky, 2018. — No 908. — P. 65–74.
Є частиною видання: Вісник Національного університету “Львівська політехніка”. Серія: Комп’ютерні системи проектування теорія і практика, 908, 2018
Журнал/збірник: Вісник Національного університету “Львівська політехніка”. Серія: Комп’ютерні системи проектування теорія і практика
Випуск/№ : 908
Дата публікації: 26-лют-2018
Видавництво: Видавництво Львівської політехніки
Місце видання, проведення: Львів
Lviv
УДК: 004.942
Теми: програмне забезпечення
математична модель
тепловологоперенесення
метод скінченних елементів
software
mathematical model
heat transfer
finite elements method
Кількість сторінок: 10
Діапазон сторінок: 65-74
Початкова сторінка: 65
Кінцева сторінка: 74
Короткий огляд (реферат): На основі тривимірної математичної моделі неізотермічного вологоперенесення у капілярно-пористих матеріалах з урахуванням анізотропії теплофізичних властивостей розроблено програмний комплекс для виконання скінченноелементного аналізу зв’яза- ного тепловологоперенесення з використанням технології CUDA.
On the basis of a three-dimensional mathematical model of nonisothermal moisture transfer in capillary-porous materials, taking into account the anisotropy of thermophysical properties, a software complex was developed for conducting finite-element analysis of bound thermal gravity with the use of CUDA technology.
URI (Уніфікований ідентифікатор ресурсу): http://ena.lp.edu.ua:8080/handle/ntb/46918
Власник авторського права: © Національний університет “Львівська політехніка”, 2018
© Sokolovskyy Ya., Nechepurenko A., 2018
URL-посилання пов’язаного матеріалу: http://www.nvidia.ru/object/cuda-parallel-computingru.html
http://www.nvidia.ru/object/cuda-openacc-online-course-ru.html
Перелік літератури: 1. Sokolovsky Ya. I. Mathematical modeling of two-dimensional visco-elastic state of wood in the process of drying / Ya. I. Sokolovsky, MV Dendyuk // Physical-mathematical modeling and information technologies. – Lviv, 2008. – Vip.7. – P. 17–26.
2. Sokolovsky Ya.I. Modeling of deformation-relaxation processes in wood during drying / Ya. I. Sokolovsky, M. V. Dendiuk, B. P. Pobereiko // Izvestiya of the University of Russia: Forest Journal. – 2007. – No. 1. – 323 p. 75–83.
3. Sokolovsky Ya. I. Modeling and optimization of technological modes of wood drying / Ya. I. Sokolovsky, A. V. Bakalets // Bulletin of the National Academy of Sciences of Ukraine. University Lviv Polytechnic University: Computer Science and Information Technologies. – Lviv, 2008. – Vip. 629. – P. 105–111.
4. Sokolovsky Ya. I. Mathematical model of thermal transfer and stress-strain state in capillary-porous materials with fractal structure / Ya. I. Sokolovsky, V. M. Shymansky // Bulletin of the National Academy of Sciences of Ukraine. Lviv Polytechnic University: Physics-Mathematical Modeling and Information Technologies. – 2012. – Vіp. 16. – P. 133–141.
5. Sokolovsky Ya. I. Mathematical modeling of the influence of the external environment on the stressstrain state of wood in the drying process / Ya. I. Sokolovsky, I. M. Kroshny // Bulletin of the National Academy of Sciences of Ukraine. Lviv Polytechnic University: Computer Design Systems. Theory of computer science. – 2011. – No. 711 – P. 72–82.
6. Savula Ya. G. Numerical analysis of the problems of mathematical physics by variational methods / Ya. G. Savula. – Lviv: View of the LNU named after. Frank, 2004. – 222 p.
7. Zenkevich O., Morgan K. Finite Elements and Approximation: Per. from english. – M.: Mir, 1986. – 318 p.
8. Segerlind L. Application of Finite Element Method. – M .: Mir, 1979.
9. Marchuk G. Methods of splitting. – Moscow: Nauka, 1988. – 263 p.
10. Sokolovsky Ya. I., Sikala O. P. Program complex of automation of finite-element sampling of two-dimensional regions / Physical-mathematical modeling and information technologies. – Lviv: Center for Mathematical Modeling of the Institute of Applied Problems of Mechanics and Mathematics named after V. Sc. Y. S. Pidstryhach, National Academy of Sciences of Ukraine, no. 19, 2014. – P. 176–188.
11. Skvortsov A. V. More effective algorithms for constructing the Delaunay triangulation // Scvortsov A. V., Kostyuk Yu. L. // Geoinformatics. Theory and practice. Yield 1. // Tomsk: Publishing House of Tomsk, UN-ta, 1998. – P. 22–47.
12. Borouchaki H., Lo S. H. Fast Delaunay triangulation in three dimensions / Computer Methods in Applied Mechanics and Engineering. Issues 1–2, 153–167.
13. Liu A, Joe B. On the form of tetrahedra from bisection //Mathematics of Computation / Issue 207, 1994. – Р. 141–154.
14. Troelsen E. The programming language C # 5.0 and the .NET 4.5 platform. – M.: Williams, 2013. – 1311 p.
15. Dedic A. D., Mujumdav A. S., Voronjec, D. K. Three Dimensional Model for Heat and Mass Transfer in Convective Wood Drying // Drying Technology, 2004, No. 3, p. 1–15
16. Siuu I. F. Wood's Influence of Wetness on Physical Properties, Virginia State University, USA. – 1995. 236 p.
17. http://www.nvidia.ru/object/cuda-parallel-computingru.html
18. http://www.nvidia.ru/object/cuda-openacc-online-course-ru.html.
19. Hybrid DSP. CUDAfy user manual // CUDAfy user manual – USA, 2015. – p. 45.
20. Sokolovsky Ya. I., Mathematical modeling of spatial heat transfer in anisotropic capillary-porous materials / Ya. I. Sokolovsky, O. P. Garasymchuk // Bulletin of the National Academy of Sciences of Ukraine. University Lviv Polytechnic University: Computer Science and Information Technologies. – Lviv, 2016. – Vip. 843. – P. 316–324.
21. Sokolovsky Ya. A software for finite-element sampling of 2D domains using parallel computations CUDA, 2016, Sokolovsky Ya. I., Necheurenko A. V., Gerasimchuk O. P. // Scientific Bulletin of NLTU of Ukraine: a collection of scientific and technical works. – Lviv, 2016, Vip. 26.05 P. 364–373.
22. Sokolowkiy Y.I. Software simulation of heat mass transfer using parallel computing technologies Nechepurenko A., Zdolbytskyy A. // Bulletin of NLP: Computer Systems. Theory and Practice – Lviv: Publishing House NULP, 2017, No. 923, p. 34–43.
References: 1. Sokolovsky Ya. I. Mathematical modeling of two-dimensional visco-elastic state of wood in the process of drying, Ya. I. Sokolovsky, MV Dendyuk, Physical-mathematical modeling and information technologies, Lviv, 2008, Vip.7, P. 17–26.
2. Sokolovsky Ya.I. Modeling of deformation-relaxation processes in wood during drying, Ya. I. Sokolovsky, M. V. Dendiuk, B. P. Pobereiko, Izvestiya of the University of Russia: Forest Journal, 2007, No. 1, 323 p. 75–83.
3. Sokolovsky Ya. I. Modeling and optimization of technological modes of wood drying, Ya. I. Sokolovsky, A. V. Bakalets, Bulletin of the National Academy of Sciences of Ukraine. University Lviv Polytechnic University: Computer Science and Information Technologies, Lviv, 2008, Vip. 629, P. 105–111.
4. Sokolovsky Ya. I. Mathematical model of thermal transfer and stress-strain state in capillary-porous materials with fractal structure, Ya. I. Sokolovsky, V. M. Shymansky, Bulletin of the National Academy of Sciences of Ukraine. Lviv Polytechnic University: Physics-Mathematical Modeling and Information Technologies, 2012, Vip. 16, P. 133–141.
5. Sokolovsky Ya. I. Mathematical modeling of the influence of the external environment on the stressstrain state of wood in the drying process, Ya. I. Sokolovsky, I. M. Kroshny, Bulletin of the National Academy of Sciences of Ukraine. Lviv Polytechnic University: Computer Design Systems. Theory of computer science, 2011, No. 711 – P. 72–82.
6. Savula Ya. G. Numerical analysis of the problems of mathematical physics by variational methods, Ya. G. Savula, Lviv: View of the LNU named after. Frank, 2004, 222 p.
7. Zenkevich O., Morgan K. Finite Elements and Approximation: Per. from english, M., Mir, 1986, 318 p.
8. Segerlind L. Application of Finite Element Method, M ., Mir, 1979.
9. Marchuk G. Methods of splitting, Moscow: Nauka, 1988, 263 p.
10. Sokolovsky Ya. I., Sikala O. P. Program complex of automation of finite-element sampling of two-dimensional regions, Physical-mathematical modeling and information technologies, Lviv: Center for Mathematical Modeling of the Institute of Applied Problems of Mechanics and Mathematics named after V. Sc. Y. S. Pidstryhach, National Academy of Sciences of Ukraine, no. 19, 2014, P. 176–188.
11. Skvortsov A. V. More effective algorithms for constructing the Delaunay triangulation, Scvortsov A. V., Kostyuk Yu. L., Geoinformatics. Theory and practice. Yield 1., Tomsk: Publishing House of Tomsk, UN-ta, 1998, P. 22–47.
12. Borouchaki H., Lo S. H. Fast Delaunay triangulation in three dimensions, Computer Methods in Applied Mechanics and Engineering. Issues 1–2, 153–167.
13. Liu A, Joe B. On the form of tetrahedra from bisection //Mathematics of Computation, Issue 207, 1994, R. 141–154.
14. Troelsen E. The programming language C # 5.0 and the .NET 4.5 platform, M., Williams, 2013, 1311 p.
15. Dedic A. D., Mujumdav A. S., Voronjec, D. K. Three Dimensional Model for Heat and Mass Transfer in Convective Wood Drying, Drying Technology, 2004, No. 3, p. 1–15
16. Siuu I. F. Wood's Influence of Wetness on Physical Properties, Virginia State University, USA, 1995. 236 p.
17. http://www.nvidia.ru/object/cuda-parallel-computingru.html
18. http://www.nvidia.ru/object/cuda-openacc-online-course-ru.html.
19. Hybrid DSP. CUDAfy user manual, CUDAfy user manual – USA, 2015, p. 45.
20. Sokolovsky Ya. I., Mathematical modeling of spatial heat transfer in anisotropic capillary-porous materials, Ya. I. Sokolovsky, O. P. Garasymchuk, Bulletin of the National Academy of Sciences of Ukraine. University Lviv Polytechnic University: Computer Science and Information Technologies, Lviv, 2016, Vip. 843, P. 316–324.
21. Sokolovsky Ya. A software for finite-element sampling of 2D domains using parallel computations CUDA, 2016, Sokolovsky Ya. I., Necheurenko A. V., Gerasimchuk O. P., Scientific Bulletin of NLTU of Ukraine: a collection of scientific and technical works, Lviv, 2016, Vip. 26.05 P. 364–373.
22. Sokolowkiy Y.I. Software simulation of heat mass transfer using parallel computing technologies Nechepurenko A., Zdolbytskyy A., Bulletin of NLP: Computer Systems. Theory and Practice – Lviv: Publishing House NULP, 2017, No. 923, p. 34–43.
Тип вмісту : Article
Розташовується у зібраннях:Комп'ютерні системи проектування теорія і практика. – 2018. – №908



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.