Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/45502
Title: Absolute sea level changes at the tide gauge station in Władysławowo using different time series software packages
Other Titles: Зміни абсолютного рівня моря на мареографічній станції у Владиславові на основі даних часових рядів з використанням різних пакетів програмного забезпечення
Authors: Лишковіч, Адам
Бернатовіч, Анна
Łyszkowicz, Adam
Bernatowicz, Anna
Affiliation: Польський університет військово-повітряних сил
Кошалінський технологічний університет
Polish Air Force University
Environmental and Geodetic Science Koszalin University of Technology
Bibliographic description (Ukraine): Łyszkowicz A. Absolute sea level changes at the tide gauge station in Władysławowo using different time series software packages / Adam Łyszkowicz, Anna Bernatowicz // Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник. — Львів : Видавництво Львівської політехніки, 2018. — Том 88. — С. 13–23.
Bibliographic description (International): Łyszkowicz A. Absolute sea level changes at the tide gauge station in Władysławowo using different time series software packages / Adam Łyszkowicz, Anna Bernatowicz // Geodesy, cartography and aerial photography : interdepartmental scientific and technical review. — Vydavnytstvo Lvivskoi politekhniky, 2018. — Vol 88. — P. 13–23.
Is part of: Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник (88), 2018
Geodesy, cartography and aerial photography : interdepartmental scientific and technical review (88), 2018
Journal/Collection: Геодезія, картографія і аерофотознімання : міжвідомчий науково-технічний збірник
Volume: 88
Issue Date: 26-Feb-2018
Publisher: Видавництво Львівської політехніки
Place of the edition/event: Львів
Keywords: середній рівень моря
мареограф
супутникові GNSS-спостереження
mean sea level
tide gauge
satellite GNSS observations
Number of pages: 11
Page range: 13-23
Start page: 13
End page: 23
URI: http://ena.lp.edu.ua:8080/handle/ntb/45502
Copyright owner: © Національний університет “Львівська політехніка”, 2018
URL for reference material: https://doi.org/10.1080/01490419.2017.1322646
https://doi.org/10.1029/2018EO104623
http://www-gpsg.mit.edu/~simon/gtgk/GAMIT.pdf
http://wwwgpsg.mit.edu/simon/gtgk/GLOBK.pdf
https://doi.org/10.1016/j.asr.2018.11.022
References (Ukraine): Altamimi, Z., Sillard, P. & Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561, 2002.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Baarda, W. (1968). A testing procedure for use in geodetic networks, Computing Centre of the Delft Geodetic Institute, Netherlands Geodetic Commission, Publications on Geodesy, New Series, 2, 5
Bitharis, S., Ampatzidis, D., Pikridas, Ch., Fotiou. A., Rossikopoulos, D. & Schuh. H. (2017). The Role of GNSS Vertical Velocities to Correct Estimates of Sea Level Rise from Tide Gauge Measurements in Greece. Marine Geodesy, 40(5), 297–314, https://doi.org/10.1080/01490419.2017.1322646
Blewitt, G. (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res., 108(B2), 2103, doi:10.1029/2002JB002082,
Blewitt, G., Hammond, W. C. & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, https://doi.org/10.1029/2018EO104623.
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. (2008). Fast error analysis of continuous GPS observations. J. Geodesy, 82 (3), 157–166.
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. (2013). Fast Error Analysis of Continuous GNSS Observations with Missing Data. J. Geod., 87(4):351–360.
Bronsztejn, I. N., Siemiendiajew, K. A., Musil, G. & Muhlig, H. (2004). Modern Compendium of Mathematics, in Polish, Wydawnictwo Naukowe PWN
Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015). Time series analysis: forecasting and control, John Wiley and Sons, 5th edition, ISBN: 978-1-118-67502-1
Cazenave, A., Bonnefond, P., Mercier, F., Dominh, K. & Toumazou, V. (2002): Sea level variations in the Mediterranean Sea and Black Sea from satellite Lviv Polytechnic altimetry and tide gauges, Global and Planetary Change, 34(1), 59–86.
Dziadziuszko, Zb. & Jednorał T. (1987). Wahania poziomów morza na polskim wybrzeżu Bałtyku. Dynamika Morza (6), Studia i Materiały Oceanologiczne, 52.
Ekman, M. (1984). Impacts of geodynamic phenomena on systems for height and gravity, Bulletin Géodésique, 63, 281–296
Fu, L. L. & Cazenave, A. (Eds.). (2000). Satellite altimetry and earth sciences: a handbook of techniques and applications (Vol. 69), Elsevier.
Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M. ... & Teferle, F. N.. (2013). Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth, 118(5), 2397–2407.
Grgić, M., Nerem, R. S., Bašić, T. (2017). Absolute Sea Level Surface Modeling for the Mediterranean from Satellite Altimeter and Tide Gauge Measurements, Marine Geodesy, 40(4), 239–258.
Goudarzi, M. A., Cocard, M., Santerre, R. & Woldai, T. (2013). GPS interactive time series analysis software, GPS Solution (2013) 17:595–603, DOI 10.1007/s10291-012-0296-2
Herring, T. (2003). MATLAB tools for viewing GPS velocities and time series, GPS Solution, January 2003GPS Solutions 7(3):194-199 DOI: 10.1007/s10291-003-0068-0
IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B., V. R. Barros, D. J. D]
Kalas, M. (1993). Characteristics of sea level changes on the Polish Coast of the Baltic Sea in the last fortyfive years. Proc. of International Workshop, SEA CHANGE’ 93 – Sea Level Changes and their Consequences for Hydrology and Water Management, Nordvvijkerhout, Netherlands, 1, 51–60.
King, R. W. (2002). Documentation for the GAMIT GPS analysis software, MIT Internal Report, 206 p(http://www-gpsg.mit.edu/~simon/gtgk/GAMIT.pdf)
King, R. W. & Herring, T. (2002). Global Kalman filter VLBI and GPS analysis program, MIT Internal Report, 98 p (http://wwwgpsg.mit.edu/simon/gtgk/GLOBK.pdf)
Łyszkowicz, A. (1995). Relative Mean Surface Topography Along the Southern Part of Baltic Sea. Artificial Satellites, Planetary Geodesy, (25), 133–141
Montag, H. (1967). Bestimmung rezenter Niveauverschiebangen aus langjährigen Wasserstandsbeobachtungen der Südlichten OstSeeküste, (Doctoral dissertation, Verlag nicht ermittelbar).
Pajak K. & Kowalczyk, K. (2018). A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data, Advances in Space Research, Available online 7 December 2018, https://doi.org/10.1016/j.asr.2018.11.022
Richter, A., Groh, A. & Dietrich, R. (2012). Geodetic observations of sea-level change and crustal deformation in the Baltic Sea region, Physics and Chemistry of the Earth, Parts A/B/C, 53, 43–53
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464.
Vermeer, M., Kakkuri, J., Mälkki, P., Boman, H., Kahma, K. K. & Leppäranta, M. (1988). Land uplift and sea level variability spectrum using fully measured monthly means of tide gauge readings.
Wöppelmann, G., Sacher, M., Adam, J., Gurtner, W., Harsson, B. G., Ihde, J., Schlüter, W. (Eds. Ihde J., Sacher M.). (2002). Report on EUVN tide gauge data collection and analysis, European Vertical Reference Network, Sub-Commission for Europe (EUREF).
Wöppelmann G. & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54.1, 64–92. doi:10.1002/2015RG000502
References (International): Altamimi, Z., Sillard, P. & Boucher, C. (2002). ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214, doi:10.1029/2001JB000561, 2002.
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723.
Baarda, W. (1968). A testing procedure for use in geodetic networks, Computing Centre of the Delft Geodetic Institute, Netherlands Geodetic Commission, Publications on Geodesy, New Series, 2, 5
Bitharis, S., Ampatzidis, D., Pikridas, Ch., Fotiou. A., Rossikopoulos, D. & Schuh. H. (2017). The Role of GNSS Vertical Velocities to Correct Estimates of Sea Level Rise from Tide Gauge Measurements in Greece. Marine Geodesy, 40(5), 297–314, https://doi.org/10.1080/01490419.2017.1322646
Blewitt, G. (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res., 108(B2), 2103, doi:10.1029/2002JB002082,
Blewitt, G., Hammond, W. C. & Kreemer, C. (2018). Harnessing the GPS data explosion for interdisciplinary science, Eos, 99, https://doi.org/10.1029/2018EO104623.
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. (2008). Fast error analysis of continuous GPS observations. J. Geodesy, 82 (3), 157–166.
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. (2013). Fast Error Analysis of Continuous GNSS Observations with Missing Data. J. Geod., 87(4):351–360.
Bronsztejn, I. N., Siemiendiajew, K. A., Musil, G. & Muhlig, H. (2004). Modern Compendium of Mathematics, in Polish, Wydawnictwo Naukowe PWN
Box, G. E., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. (2015). Time series analysis: forecasting and control, John Wiley and Sons, 5th edition, ISBN: 978-1-118-67502-1
Cazenave, A., Bonnefond, P., Mercier, F., Dominh, K. & Toumazou, V. (2002): Sea level variations in the Mediterranean Sea and Black Sea from satellite Lviv Polytechnic altimetry and tide gauges, Global and Planetary Change, 34(1), 59–86.
Dziadziuszko, Zb. & Jednorał T. (1987). Wahania poziomów morza na polskim wybrzeżu Bałtyku. Dynamika Morza (6), Studia i Materiały Oceanologiczne, 52.
Ekman, M. (1984). Impacts of geodynamic phenomena on systems for height and gravity, Bulletin Géodésique, 63, 281–296
Fu, L. L. & Cazenave, A. (Eds.). (2000). Satellite altimetry and earth sciences: a handbook of techniques and applications (Vol. 69), Elsevier.
Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M. ... & Teferle, F. N.. (2013). Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment. Journal of Geophysical Research: Solid Earth, 118(5), 2397–2407.
Grgić, M., Nerem, R. S., Bašić, T. (2017). Absolute Sea Level Surface Modeling for the Mediterranean from Satellite Altimeter and Tide Gauge Measurements, Marine Geodesy, 40(4), 239–258.
Goudarzi, M. A., Cocard, M., Santerre, R. & Woldai, T. (2013). GPS interactive time series analysis software, GPS Solution (2013) 17:595–603, DOI 10.1007/s10291-012-0296-2
Herring, T. (2003). MATLAB tools for viewing GPS velocities and time series, GPS Solution, January 2003GPS Solutions 7(3):194-199 DOI: 10.1007/s10291-003-0068-0
IPCC. (2014). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B., V. R. Barros, D. J. D]
Kalas, M. (1993). Characteristics of sea level changes on the Polish Coast of the Baltic Sea in the last fortyfive years. Proc. of International Workshop, SEA CHANGE’ 93 – Sea Level Changes and their Consequences for Hydrology and Water Management, Nordvvijkerhout, Netherlands, 1, 51–60.
King, R. W. (2002). Documentation for the GAMIT GPS analysis software, MIT Internal Report, 206 p(http://www-gpsg.mit.edu/~simon/gtgk/GAMIT.pdf)
King, R. W. & Herring, T. (2002). Global Kalman filter VLBI and GPS analysis program, MIT Internal Report, 98 p (http://wwwgpsg.mit.edu/simon/gtgk/GLOBK.pdf)
Łyszkowicz, A. (1995). Relative Mean Surface Topography Along the Southern Part of Baltic Sea. Artificial Satellites, Planetary Geodesy, (25), 133–141
Montag, H. (1967). Bestimmung rezenter Niveauverschiebangen aus langjährigen Wasserstandsbeobachtungen der Südlichten OstSeeküste, (Doctoral dissertation, Verlag nicht ermittelbar).
Pajak K. & Kowalczyk, K. (2018). A comparison of seasonal variations of sea level in the southern Baltic Sea from altimetry and tide gauge data, Advances in Space Research, Available online 7 December 2018, https://doi.org/10.1016/j.asr.2018.11.022
Richter, A., Groh, A. & Dietrich, R. (2012). Geodetic observations of sea-level change and crustal deformation in the Baltic Sea region, Physics and Chemistry of the Earth, Parts A/B/C, 53, 43–53
Schwarz, G. (1978). Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464.
Vermeer, M., Kakkuri, J., Mälkki, P., Boman, H., Kahma, K. K. & Leppäranta, M. (1988). Land uplift and sea level variability spectrum using fully measured monthly means of tide gauge readings.
Wöppelmann, G., Sacher, M., Adam, J., Gurtner, W., Harsson, B. G., Ihde, J., Schlüter, W. (Eds. Ihde J., Sacher M.). (2002). Report on EUVN tide gauge data collection and analysis, European Vertical Reference Network, Sub-Commission for Europe (EUREF).
Wöppelmann G. & Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability. Reviews of Geophysics, 54.1, 64–92. doi:10.1002/2015RG000502
Content type: Article
Appears in Collections:Геодезія, картографія і аерофотознімання. – 2018. – Випуск 88



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.