Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/44889
Title: Analytical methods of optimization of operational parameters of the main gas pipelines (gas mains)
Other Titles: Аналітичні методи оптимізації параметрів роботи газових трубопроводів (газових магістралей)
Authors: Фролов, В.
П’янило, Я.
Притула, М.
Frolov, V.
Pyanylo, Ya.
Prytula, M.
Affiliation: Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача
Centre of Mathematical Modelling of Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NAS of Ukraine
Bibliographic description (Ukraine): Frolov V. Analytical methods of optimization of operational parameters of the main gas pipelines (gas mains) / V. Frolov, Ya. Pyanylo, M. Prytula // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 1–9.
Bibliographic description (International): Frolov V. Analytical methods of optimization of operational parameters of the main gas pipelines (gas mains) / V. Frolov, Ya. Pyanylo, M. Prytula // Mathematical Modeling and Computing. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 5. — No 1. — P. 1–9.
Is part of: Mathematical Modeling and Computing, 1 (5), 2018
Journal/Collection: Mathematical Modeling and Computing
Issue: 1
Volume: 5
Issue Date: 15-Jan-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
UDC: 622.692.4
622.691.24
Keywords: газотранспортна система
оптимiзацiя
оптимальний режим
компресорна станцiя
gas transportation system
optimization
optimal mode
compressor station
Number of pages: 9
Page range: 1-9
Start page: 1
End page: 9
Abstract: Запропоновано аналiтичну модель експлуатацiї магiстрального газопроводу. Наведе- но результати дослiдження областi оптимальностi за допомогою аналiтичних мето- дiв. Розроблене програмне забезпечення перевiрене на реальних даних. Представле- но порiвняльнi результати моделювання та оптимiзацiї за допомогою чисельних та аналiтичних методiв.
An analytical model for the operation of the main gas pipeline is proposed. The results of the investigation of the domain of optimality by analytical methods are presented. The developed software is tested on real data. Comparative results of modeling and optimization by numerical and analytical methods are presented.
URI: http://ena.lp.edu.ua:8080/handle/ntb/44889
Copyright owner: © 2018 Lviv Polytechnic National University CMM IAPMM NASU
© 2018 Lviv Polytechnic National University CMM IAPMM NASU
References (Ukraine): [1] BellmanR.E., Dreyfus S.E. Applied Dynamic Programming. Princeton, New Jersey, Princeton university press (1962).
[2] GarliauskasA.N. Dyskretnyy princip maksimuma pri upravlenii magistralnymi gasoprovodami. Gasovaia promyshlennost. 4, 14–17 (1971), (in Russian).
[3] SunC.K., UraikulV., Chan˙C.W., TontiwachwuthikulP. An integrated expert system/operations research approach for optimization of natural gas pipeline operations. Engineering Applications of Artificial Intelligence.13 (4), 465–475 (2000).
[4] TodiniE., Pilati S. A gradient algorithm for the analysis of pipe networks. Computer Applications in Water Supply: Vol. 1 System analysis and simulation. London, John Wiley & Sons. 1–20 (1988).
[5] Rios-MercadoR. Z., Wu S., Scott L.R., BoydE.A. A Reduction technique for natural gas transmission network optimization problems. Annals of Operations Research. 117, 217–234 (2002).
[6] KulikV. S. Gas transport through branched gas transmission system optimization algorithm. Truboprovodnyi transport: teoriia i praktika. 2, 22–25 (2014), (in Russian).
[7] KulikV. S., KazakA. S., Hrabov I.Yu. Optimization of operating modes of distance gas transportation systems with changing productivity. Truboprovodnyy transport: teoriia i praktika. 5. 38–42 (2015), (in Russian).
[8] KarasevychA.M., SuharevM.G., BelinskiyA.V., Tverskoy I.V., SamoilovR.V. Energoeffektivnyie rezhimy gasotransportnyh system i principy ih obespecheniia. Gazovaia promyshlennost. 1, 30–34 (2012), (in Russian).
[9] PrytulaN., FrolovV., PrytulaM. Optimal scheduling of operating modes of the gas transmission system. Mathematical modeling and computing. 4 (1), 78–86 (2017).
[10] PrytulaN., PrytulaM., DaciukA., Gladun S., HymkoO. Optymizaciia rezhymiv roboty gazotransportnoii systemy. Visnyk Nacionalnogo universytety “Lvivska politehnika”. Komputerni nauky ta informaciyni tehnologii. 694, 395–401 (2011), (in Ukrainian).
[11] PrytulaN., PrytulaM., YamnychV., DaciukA., Gladun S., HymkoO. Pro optymalni rezhymy roboty bagatonytkovyh magistralnyh gazoprovodiv. Visnyk Nacionalnogo universytetu “Lvivska politehnika”. Komputerni nauky ta informaciini tehnologii. 719, 256–261 (2011), (in Ukrainian).
[12] Sardanashvili S.A. Rascietnyie metody i algoritmy (truboprovodnyj transport gaza). Moscow, FGUP Izdatielstvo ¾Neft i gaz¿ RGU nefti i gaza (2005), (in Russian).
[13] PrytulaN.M., PyanyloYa.D., PrytulaM.G. Pidzemne zberigannia gazu (matematychni modeli ta metody). Lviv, RASTR-7 (2015), (in Ukrainian).
References (International): [1] BellmanR.E., Dreyfus S.E. Applied Dynamic Programming. Princeton, New Jersey, Princeton university press (1962).
[2] GarliauskasA.N. Dyskretnyy princip maksimuma pri upravlenii magistralnymi gasoprovodami. Gasovaia promyshlennost. 4, 14–17 (1971), (in Russian).
[3] SunC.K., UraikulV., Chan˙C.W., TontiwachwuthikulP. An integrated expert system/operations research approach for optimization of natural gas pipeline operations. Engineering Applications of Artificial Intelligence.13 (4), 465–475 (2000).
[4] TodiniE., Pilati S. A gradient algorithm for the analysis of pipe networks. Computer Applications in Water Supply: Vol. 1 System analysis and simulation. London, John Wiley & Sons. 1–20 (1988).
[5] Rios-MercadoR. Z., Wu S., Scott L.R., BoydE.A. A Reduction technique for natural gas transmission network optimization problems. Annals of Operations Research. 117, 217–234 (2002).
[6] KulikV. S. Gas transport through branched gas transmission system optimization algorithm. Truboprovodnyi transport: teoriia i praktika. 2, 22–25 (2014), (in Russian).
[7] KulikV. S., KazakA. S., Hrabov I.Yu. Optimization of operating modes of distance gas transportation systems with changing productivity. Truboprovodnyy transport: teoriia i praktika. 5. 38–42 (2015), (in Russian).
[8] KarasevychA.M., SuharevM.G., BelinskiyA.V., Tverskoy I.V., SamoilovR.V. Energoeffektivnyie rezhimy gasotransportnyh system i principy ih obespecheniia. Gazovaia promyshlennost. 1, 30–34 (2012), (in Russian).
[9] PrytulaN., FrolovV., PrytulaM. Optimal scheduling of operating modes of the gas transmission system. Mathematical modeling and computing. 4 (1), 78–86 (2017).
[10] PrytulaN., PrytulaM., DaciukA., Gladun S., HymkoO. Optymizaciia rezhymiv roboty gazotransportnoii systemy. Visnyk Nacionalnogo universytety "Lvivska politehnika". Komputerni nauky ta informaciyni tehnologii. 694, 395–401 (2011), (in Ukrainian).
[11] PrytulaN., PrytulaM., YamnychV., DaciukA., Gladun S., HymkoO. Pro optymalni rezhymy roboty bagatonytkovyh magistralnyh gazoprovodiv. Visnyk Nacionalnogo universytetu "Lvivska politehnika". Komputerni nauky ta informaciini tehnologii. 719, 256–261 (2011), (in Ukrainian).
[12] Sardanashvili S.A. Rascietnyie metody i algoritmy (truboprovodnyj transport gaza). Moscow, FGUP Izdatielstvo ¾Neft i gaz¿ RGU nefti i gaza (2005), (in Russian).
[13] PrytulaN.M., PyanyloYa.D., PrytulaM.G. Pidzemne zberigannia gazu (matematychni modeli ta metody). Lviv, RASTR-7 (2015), (in Ukrainian).
Content type: Article
Appears in Collections:Mathematical Modeling And Computing. – 2018. – Vol. 5, No. 1



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.