Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ena.lp.edu.ua:8080/handle/ntb/42607
Назва: Reduction of hydrodynamic flow measurement error of chordal ultrasonic flowmeter
Інші назви: Зменшення гідродинамічної похибки хордових ультразвукових витратомірів
Автори: Матіко, Федір
Роман, Віталій
Ковальчук, Іванна Іванівна
Matiko, Fedir
Roman, Vitalii
Kovalchuk, Ivanna
Приналежність: Національний університет “Львівська політехніка”
Lviv Polytechnic National University
Бібліографічний опис: Matiko F. Reduction of hydrodynamic flow measurement error of chordal ultrasonic flowmeter / Fedir Matiko, Vitalii Roman, Ivanna Kovalchuk // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 3. — No 2. — P. 57–62.
Bibliographic description: Matiko F. Reduction of hydrodynamic flow measurement error of chordal ultrasonic flowmeter / Fedir Matiko, Vitalii Roman, Ivanna Kovalchuk // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 3. — No 2. — P. 57–62.
Є частиною видання: Energy Engineering and Control Systems, 2 (3), 2017
Випуск/№ : 2
Том: 3
Дата публікації: 10-лис-2017
Видавництво: Lviv Politechnic Publishing House
Місце видання, проведення: Lviv
Теми: ультразвуковий витратомір
гідродинамічна похибка
степеневий закон
акустичні канали
хордова схема
ultrasonic flowmeter
hydrodynamic error
power law
acoustic paths
chordal scheme
Кількість сторінок: 6
Діапазон сторінок: 57-62
Початкова сторінка: 57
Кінцева сторінка: 62
Короткий огляд (реферат): Досліджено способи зменшення гідродинамічної похибки вимірювання витрати ультразвуковими витратомірами для розповсюджених схем розташування їхніх акустичних каналів. Детально розглянуто спосіб розрахунку оптимальних координат розташування акустичних каналів ультразвукових витратомірів з використанням аналітико-емпіричного степеневого закону розподілу швидкості неспотвореного потоку. За результатами роботи автори розрахували оптимальне розташування акустичних каналів для хордових схем дво- та триканальних ультразвукових витратомірів. Встановлено, що оптимізація схем розташування акустичних каналів хордових ультразвукових витратомірів дає змогу зменшити гідродинамічну похибку вимірювання витрати до значення 0,05 % (для двоканальних витратомірів) та 0,1 % (для триканальних). Розроблений підхід є зручним під час проектування багатоканальних ультразвукових витратомірів та їхнього дослідження в лабораторних умовах.
In this work, ways of reducing the hydrodynamic flow measurement error of chordal ultrasonic flowmeter for the distributed location schemes of their acoustic paths are investigated. The method of calculating optimal location coordinates of the acoustic paths of ultrasonic flowmeters is considered in detail, using the analytical-empirical power law of the distribution of the velocity of the undistorted flow. As a result of the work, the authors calculated the optimal arrangement of acoustic paths for chordal schemes of two– and three-path ultrasonic flowmeters. It was established that optimization of the location scheme of the acoustic paths of chordal ultrasonic flowmeters allows reducing the hydrodynamic flow measurement error to the value of 0.05 % (for two-path flowmeters) and 0.1 % (for three-path). The developed approach is convenient when designing multipath ultrasonic flowmeters and their research in laboratory conditions.
URI (Уніфікований ідентифікатор ресурсу): http://ena.lp.edu.ua:8080/handle/ntb/42607
Власник авторського права: © 2017 The Authors. Published by Lviv Polytechnic National University
URL-посилання пов’язаного матеріалу: https://publications.europa.eu/en/publication-detail/-/publication/6a4e9fcc-0958-4f82-8942-12731a486634
https://doi.org/10.1177/014233128400600403
Перелік літератури: [1] Konovalov, V. I., Orlov, V. S. and Parakuda, V. V. (2005) Standardization and control of metrological characteristics of acoustic measuring transducers of flow. Ukrainian Metrological Journal, 4, 35–41 (in Ukrainian).
[2] Kostylev, V. V., Sorokoput, V. L., Stetsenko, A.A. and Stetsenko, A.I. (2002) Principles of construction of a multipath ultrasonic flowmeter. Proceedings of the 12th International scientific-practical conference “Perfection of measurement of liquid, gas and steam flow”, St.Petersburg, 23–25 April 2002, 288 p. (in Russian).
[3] Merzkirch, W., Gersten, K., and Hans V. (2005) Fluid mechanics of flow metering. Springer, NY, 256 pages.
[4] Lynnworth, L. C. (1979) Ultrasonic flowmeters: Physical acoustics – Principle and methods: Vol. 14. Edit by W. P. Mason and R. N. Thurston. Academic Press, NY, 407–525.
[5] Birger, G. I., and Brazhnikov, N. I. (1964) Ultrasonic flowmeters. Metallurgy Publ., 82 pages (in Russian).
[6] Installation effects on multi-path ultrasonic flow meters : technical report EUR 16175 EN / Research & Engineering Centre BP International Ltd. ; editor M. B. Wilson. – Sunbury (UK), 1995. – 81 pages. https://publications.europa.eu/en/publication-detail/-/publication/6a4e9fcc-0958-4f82-8942-12731a486634.
[7] Kremlevsky P. P. (2004) Flow meters and meters the quantity of substances. Edit by E. A. Shornikov. Polytechnics Publ., St. Petersburg,412 pages (in Russian).
[8] International Organization for Standardization. (2010). ISO 17089-1: Measurement of fluid flow in closed conduits – Ultrasonic meters for gas. Part 1: Meters for custody transfer and allocation measurement. Geneva, Switzerland: ISO.
[9] Salami, L.A. (1984) Application of a computer to asymmetric flow measurement in circular pipes. Trans. Inst. Meas. Control, 6, 197–206.doi: https://doi.org/10.1177/014233128400600403.
[10] Tereshchenko, S. A., and Rychagov, M. N. (2004) Acoustic multiplane flow metering based on quadrature integration methods. Acoustic journal. 50(1), 116–122 (in Russian).
References: [1] Konovalov, V. I., Orlov, V. S. and Parakuda, V. V. (2005) Standardization and control of metrological characteristics of acoustic measuring transducers of flow. Ukrainian Metrological Journal, 4, 35–41 (in Ukrainian).
[2] Kostylev, V. V., Sorokoput, V. L., Stetsenko, A.A. and Stetsenko, A.I. (2002) Principles of construction of a multipath ultrasonic flowmeter. Proceedings of the 12th International scientific-practical conference "Perfection of measurement of liquid, gas and steam flow", St.Petersburg, 23–25 April 2002, 288 p. (in Russian).
[3] Merzkirch, W., Gersten, K., and Hans V. (2005) Fluid mechanics of flow metering. Springer, NY, 256 pages.
[4] Lynnworth, L. C. (1979) Ultrasonic flowmeters: Physical acoustics – Principle and methods: Vol. 14. Edit by W. P. Mason and R. N. Thurston. Academic Press, NY, 407–525.
[5] Birger, G. I., and Brazhnikov, N. I. (1964) Ultrasonic flowmeters. Metallurgy Publ., 82 pages (in Russian).
[6] Installation effects on multi-path ultrasonic flow meters : technical report EUR 16175 EN, Research & Engineering Centre BP International Ltd. ; editor M. B. Wilson, Sunbury (UK), 1995, 81 pages. https://publications.europa.eu/en/publication-detail/-/publication/6a4e9fcc-0958-4f82-8942-12731a486634.
[7] Kremlevsky P. P. (2004) Flow meters and meters the quantity of substances. Edit by E. A. Shornikov. Polytechnics Publ., St. Petersburg,412 pages (in Russian).
[8] International Organization for Standardization. (2010). ISO 17089-1: Measurement of fluid flow in closed conduits – Ultrasonic meters for gas. Part 1: Meters for custody transfer and allocation measurement. Geneva, Switzerland: ISO.
[9] Salami, L.A. (1984) Application of a computer to asymmetric flow measurement in circular pipes. Trans. Inst. Meas. Control, 6, 197–206.doi: https://doi.org/10.1177/014233128400600403.
[10] Tereshchenko, S. A., and Rychagov, M. N. (2004) Acoustic multiplane flow metering based on quadrature integration methods. Acoustic journal. 50(1), 116–122 (in Russian).
Тип вмісту : Article
Розташовується у зібраннях:Energy Engineering And Control Systems. – 2017. – Vol. 3, No. 2



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.