Influence of the intersymbol interference on the length of regeneration section in fots

Valentin Breskin, Anna Masur

Abstract – Influence of intersymbol interference value on eye diagram on duration opening and dependence of number of generators of network elements in a circuit of clock network synchronization from dispersion relative value changing is considered.

Keywords – Relative dispersion, jitter, generators of network elements.

When increasing the capacity of a transport network increases the variance, which restricts the transmission rate. When using single-mode cable SF and laser diode with distributed feedback (line width is equal to 0.01nm [1]) from the rate 2.5Gbit/s limit on rate.

Admissible values \(z \) it is possible to change in limits \(0,25 \leq z \leq 1 \) [2]. Proceeding from it, it is possible to define that relative duration of impulse (1) will change in limits \(1 \leq \tau \leq 1,4 \).

In a case when the relative dispersion value equals to unit, eye diagram opening decreases to \(\sqrt{0,25} \) (fig. 1.)

In work [2] it has been defined that increase of relative dispersion \(z \) to 0.5 (i.e. twice in comparison with the standard value \(z = 0,25 \)) practically does not change signal immunity during the significant moment of time. However these recommendations did not consider reduction of eye diagram on time \(T_z \) opening with increase of \(z \), that leads to increase in phase jitter of clock frequency.

In [2] it is shown that for Gaussian response relative duration of an impulse \(\tau \) it is connected with \(z \) by relation:

\[
\tau = \sqrt{z^2 + 1}
\]

(1)

Cumulative in a circuit jitter \(\Delta \varphi \) is proportional to \(\sqrt{n \cdot \sigma} \), where \(n \) is quantity of GNE in a circuit; \(\sigma \) is dispersion of one GNE.

Denote the permissible number of GNE through \(n_1 \), then \(\Delta \varphi = \sqrt{n_1 \cdot \sigma} \), where, according to [3], \(n_1 = 20 \), \(z = 0,25 \). Accordingly cumulative in a circuit jitter for other values \(z \) let's write down as \(\sqrt{n_2 \cdot \sigma} \), where \(n_2 \) - number of GNE for the used \(z \). From this it follows that

\[
n_2 = n_1 \left(\frac{T_{z=1}}{T_{z=0,25}} \right)^2 = 20 \left(\frac{T_{z=1}}{T_{z=0,25}} \right)^2
\]

The schedule of dependence of number of GNE from value \(z \) it is resulted on fig. 2.

Based on the results we can conclude that changing the value \(z \) for the increase of length of the regeneration section, it is necessary to take into account the number of series-connected in a synchronization circuit of transmission systems generators of network elements to meet the requirements [3].

REFERENCES

