DYNAMIC PROPERTIES OF TRANSDUCERS TESTING USING WHITE NOISE EXCITATION. PART 2: FREQUENCY DOMAIN

© Robert Hanus, 2007

Rzeszów University of Technology, Department of Metrology and Measurement Systems
2B, W. Pola Street, 35-959 Rzeszów, Poland; e-mail: rohan@prz.rzeszow.pl

This article deals with experimental non-parametric methods of parameters qualifying dynamic properties of transducers of voltage/voltage type using external stochastic input function (white noise) and single-sided power spectral density functions. To compute the power spectral density functions Brüel & Kjær 3550 digital signal analyser has been applied.

1.1. Inertial transducer of the 1st order

Comparing dependence (4) and (5) it is easy to notice that \(G_y(\omega)_{\text{dB}} \) and \(L(\omega)_{\text{dB}} \) characteristics differ only in \(10\log a \) constant value. Taking this fact into consideration the refraction pulsation \(\omega_z \) can be calculated from the course of PSD, in the same way as in the case of the amplitude-frequency logarithmic characteristic [11], approximating \(G_y(\omega)_{\text{dB}} \) with two half-lines characterised by equations (for \(K(\omega) = k / (1 + \omega^2 T^2)^{1/2} \), where: \(k \) - gain coefficient, \(T \) - time-constant):

\[
G_y(\omega)_{\text{dB}} = \begin{cases}
20 \log k + 10 \log a & \text{if } \omega \leq \omega_0 \\
20 \log k + 10 \log a + 20 \log a T & \text{if } \omega > \omega_0
\end{cases}
\]

(6)

According to dependence (6) a slope of a half-line for \(\omega > 1/T \) equals \(-20 \) dB/decade. The downgréade of the characteristic: \(\Delta G_y(\omega)_{\text{dB}} = G_y(\omega)_{\text{dB}} - G_y(\omega_0) \) for \(\omega = 1/T \) equals \(-3 \) dB. On the basis of the refraction pulsation time-
constant of transducer can be defined:

\[
T = 1/\omega_z.
\]

(7)

Figure 1 shows an exemplary course of PSD \(G_y(\omega)_{\text{dB}} \), defined for the model of the 1st order transducer, using a rectangular data window and \(N = 1000 \) averaging number.

In table 1 there is the comparison of time-constant achieved as an outcome of examining of two transducer...
models of the 1st order applying step input function and white noise. In the case of step function the time-constant is obtained by the course of step response [8].

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Transducer No</th>
<th>Step excitation</th>
<th>Noise excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T [μs]</td>
<td>1</td>
<td>480</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>102</td>
<td>103</td>
</tr>
</tbody>
</table>

1.2. Oscillatory transducer of the 2nd order

There are two parameters defining the dynamics of the 2nd order oscillatory transducer and they are: the damping ratio ξ and the undamped natural pulsation ω_0. The first of these values is calculated on the basis of the analysis of the course of the amplitude-frequency characteristic of the system from dependence [5]:

$$K(\omega_r)/K_0 = 1/2\xi(1-\xi^2)^{1/2} \Rightarrow \xi,$$

(8)

where: $K(\omega_r)$, ω_r – the resonant peak coordinates, K_0 – the amplitude of the initial characteristic $K(\omega)$.

Taking into account equation (3), dependence (8) can take the form of:

$$[G_y(\omega_r)/G_y(0)]^{1/2} = 1/\sqrt{2}\xi(1-\xi^2)^{1/2},$$

(9)

where after modifications one gets:

$$\xi_{1,2} = \left(1 \pm \sqrt{\left(\frac{G_y(0)}{G_y(\omega_r)}\right)^2 - 1}\right)/2.$$

(10)

An exemplary course of PSD $G_y(\omega)$ function, determined for the model of the 2nd order oscillatory transducer is shown in figure 2.

Fig. 1. Power spectral density $G_y(\omega)$ for the 1st order transducer model

Fig. 2. Power spectral density $G_y(\omega)$ of the 2nd order oscillatory transducer
The natural pulsation ω_0 can be determined on the basis of the resonance pulsation ω_r and the damping ratio ξ from dependence:

$$\omega_0 = \omega_r / (1 - 2\xi^2)^{1/2}.$$ \hspace{1cm} (11)

From equations (10) and (11) one gets a couple of solutions.

Comparison of damping ratio and natural pulsation of two 2^{nd} order transducer models obtained by using step and noise excitation is shown in table 2. In the case of noise input function ξ and ω_0 are calculated on the basis on equation (10) and (11).

Table 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Transducer No</th>
<th>Step excitation</th>
<th>Noise excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ [-]</td>
<td>1</td>
<td>0,539</td>
<td>0,528</td>
</tr>
<tr>
<td>2</td>
<td>0,294</td>
<td>0,296</td>
<td></td>
</tr>
<tr>
<td>ω_0 [rad/s]</td>
<td>1</td>
<td>8778</td>
<td>8339</td>
</tr>
<tr>
<td>2</td>
<td>9005</td>
<td>8840</td>
<td></td>
</tr>
</tbody>
</table>

Determination of transducers dynamics parameters on the basis of the course of cross-spectral density functions

The single-sided cross-spectral density function (CSD) $G_{xy}(\omega)$ of the input $x(t)$ and output $y(t)$ signals of transducer is connected with the spectral transmittance of the examined system $K(j\omega) = K(\omega)e^{-j\phi(\omega)}$ by the dependence:

$$G_{xy}(j\omega) = K(j\omega)G_x(\omega),$$ \hspace{1cm} (12)

where $G_x(\omega)$ is CSD of the $x(t)$ input signal.

Expression (12) can be written as:

$$G_{xy}(\omega)\exp\{-j\Phi_{xy}(\omega)\} = K(\omega)\exp\{-j\phi(\omega)\}G_x(\omega),$$ \hspace{1cm} (13)

where:

$$G_{xy}(\omega) = |G_{xy}(j\omega)| = |K(j\omega)|G_x(\omega),$$ \hspace{1cm} (14)

$$\Phi_{xy}(\omega) = \arg\{G_{xy}(j\omega)\} = \arg\{K(j\omega)\} = \phi(\omega).$$ \hspace{1cm} (15)

In the case of the input signal in the form of white noise with constant PSD $G_x(\omega) = a = \text{const}$

dependence (14) takes the form of:

$$G_{xy}(\omega) = |K(j\omega)|a,$$ \hspace{1cm} (16)

and further:

$$K(\omega) = \sqrt{|G_{xy}(\omega)|/a}.$$ \hspace{1cm} (17)

Defining CSD in dB, on the basis of equation (16) one gets:

$$G_{xy}(\omega)_{DB} = 10\log G_{xy}(\omega) =$$

$$= 10\log|K(j\omega)| + 10\log a.$$ \hspace{1cm} (18)

2.1. Inertial transducer of the 1st order

Taking into consideration (18), (5) and the analyses described in 1.1 one can assume that in the case of CSD refraction pulsation ω_z can be graphically defined after $G_{xy}(\omega)_{DB}$ course approximation with two half-lines expressed by equations:

$$\begin{array}{l}
G_{xy}(\omega)_{DB} = \begin{cases}
10\log k + 10\log a = \\
= G_{xy0} & \omega \leq 1/T \\
10\log k + 10\log a + \\
-10\log aT & \omega \geq 1/T
\end{cases}
\end{array}$$ \hspace{1cm} (19)

A slope of a half-line for $\omega > 1/T$ equals -10 dB/decade and characteristic downgrade $\Delta G_{xy}(\omega)_{DB} = G_{xy}(\omega)_{DB} - G_{xy0}$ for $\omega = 1/T$ equals -1.5 dB. The time-constant of a transducer is calculated from dependence (6).

An additional information is included in phase characteristic CSD (15), the course of which equals to phase-frequency transducer characteristic.

In figure 3 there are some exemplary courses of $G_{xy}(\omega)_{DB}$ module and $\Phi_{xy}(\omega)$ phase characteristics, calculated for the 1st order transducer module.

In table 3 there is the comparison of time-constant achieved for two transducer models of the 1st order applying step input function and white noise and cross-spectral density function.

Table 3

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Transducer No</th>
<th>Step excitation</th>
<th>Noise excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>T [µs]</td>
<td>1</td>
<td>480</td>
<td>474</td>
</tr>
<tr>
<td>2</td>
<td>102</td>
<td>100,5</td>
<td></td>
</tr>
</tbody>
</table>
2.2. Oscillatory transducer of the 2nd order

Exemplary courses of module $G_{xy}(\omega)$ and phase $\Phi_{xy}(\omega)$ CSD characteristics, defined for the 2nd order transducer model are shown in figure 4.

Regarding equation (8) and (16) one gets the dependence, out of which damping ratio ξ is calculated:

$$G_{xy}(\omega_0)/G_{xy}0 = 1/2\xi(1-\xi^2)^{(1/2)} \Rightarrow \xi, \quad (20)$$

where after some modifications one gets:

$$\xi_{1,2} = \sqrt{\left\{1 \pm \frac{1}{2} - \frac{G_{xy0}}{G_{xy}0}\right\}^{-\left(1/2\right)}}, \quad (21)$$

The natural pulsation ω_0 is calculated from equation (11).

Comparison of damping ratio and natural pulsation of two 2nd order transducer models obtained by using step
and noise excitation is shown in table 4. In the case of noise input function ξ and ω_0 are calculated on the basis on equation (21) and (11).

Table 4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Transducer No</th>
<th>Step excitation</th>
<th>Noise excitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ξ [-]</td>
<td>1</td>
<td>0.539</td>
<td>0.506</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.294</td>
<td>0.307</td>
</tr>
<tr>
<td>ω_0 [rad/s]</td>
<td>1</td>
<td>8778</td>
<td>8459</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9005</td>
<td>8661</td>
</tr>
</tbody>
</table>

Conclusion

The methods of defining dynamic properties of transducers using noise as testing signals have many advantages and these are [3, 5]:

- the possibility of using random noise, which occurs during normal work of the system;
- the possibility of defining dynamic parameters in the presence of noise (the possibility of eliminating object's own noise influence, under the condition that the noise is noncorrelated with the input signal);
- the measurement time is unlimited as it happens for example in the case of step function.

That is why the application of probabilistic methods is deliberate when:

- useful signals of transducers are the stochastic signals;
- work conditions of transducers do not allow to apply determined testing signals;
- there is no possibility of isolating the examined transducer from noise, as an outcome of which there are huge adulterations of transducer responses to determined testing function;
- getting the determined testing signal is difficult because of the requirements concerning its shape.

As to the disadvantages of the mentioned methods, there is the necessity of determining and analysing statistic characteristics of random signals (in the discussed cases cross-correlation and power spectral density functions). This is, however, more complicated and requires much more time and technical agents than in the case of applying determined signals.

The results shown in tables 1-4 (and tables 1-2 in part I) show basically a bit greater scatter of parameter values in the case of noise excitation. Taking into account a big variance of correlation and spectral function estimators numerically calculated using FFT, it is necessary to use averaging which increases the measurement time.