The Electrode Material for Hybrid Supercapacitor Based on the Nanostructured Iron-Substituted Lithium-Manganese Spinels

R. Lisovsky, B. Ostafiychuk, I. Budzulyak, A. Boychuk, B. Rachiy, V. Kotsyubynsky

Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., 76018 Ivano-Frankivs'k, Ukraine

Modern electronic devices and electric transport demand new energy sources with high specific power, capacity and energy. The hybrid supercapacitors (HSC) combine advantages of carbon and Faraday’s electrodes and are the most perspective alternative of lithium power sources. We investigated the electrode material of HSC based on the LiMn$_{1.95}$Fe$_{0.05}$O$_4$ spinel in LiNO$_3$ and Li$_2$SO$_4$ water electrolytes.

The carbonated and activated carbon (specific surface area about 670 m2/g, average mesopores and micropores sizes are 8 and 1.7 nm, respectively) were used as a polarized electrode. Lithium-manganese spinel was synthesized by sol-gel method without autoburning. As the initial precursors we used Mn(NO$_3$)$_3$·6H$_2$O, LiNO$_3$·3H$_2$O and Fe(NO$_3$)$_3$·9H$_2$O. The electrochemical studies were performed by the galvanostatic cycling and cyclic voltammetry. The diffusion coefficient was calculated by galvanostatic intermittent titration method.

The monophase LiMn$_{1.95}$Fe$_{0.05}$O$_4$ spinel with the Fe$^{3+}$ cations substitution in the octahedral sites has been obtained (XRD and Mossbauer spectroscopy data). The average particle sizes (calculated by Scherrer equation) were about 10-12 nm. The measurement of conductivity’s frequency dependencies (impedance spectroscopy data) indicates the presence of the conductivity percolation mechanism in the 103 - 105 Hz range due to electrons jumps between the iron cations in the spinel lattice. The obtained values of DC conductivity (about 10$^{-3}$ Sm/m) are significantly higher than typical characteristic of unsubstituted lithium manganese spinel. Discharge curves (current density 1C) are characterized by a lateral region in 0.9-0.8 V range (Fig. 1a). Redox peaks were observed at the CVA curves in the same voltage range so it’s an evidence of lithium intercalation in the spinel structure. Calculated diffusion coefficient vary in 10$^{-9}$ -10$^{-10}$ cm2/s range. Such comparatively high values are associated to high conductivity of spinel grains. The model capacitor specific capacitance decrease with the current density enlarging to 10 C and 20 C (Fig. 1b), however system are reversible even after high current cycling. The specific power of model capacitors was about 700 W/kg.