Thermal Behaviour of PrCo$_{1-x}$Fe$_x$O$_3$ Probed by X-Ray Synchrotron Powder Diffraction and Impedance Spectroscopy Measurements

O. Pekinchak1, D.Yu. Sugak1, S.B. Ubizskii1, Yu. Suhak2, H. Fritze2, L. Vasylechko1

1Lviv Polytechnic National University, Lviv, Ukraine
2Institute of Energy Research and Physical Technologies, Clausthal University of Technology, Goslar, Germany

Crystal structure and transport properties of the mixed praseodymium cobaltites-ferrites PrCo$_{1-x}$Fe$_x$O$_3$ have been studied in the temperature range of 298–1173 K by a combination of in-situ X-ray synchrotron powder diffraction and temperature dependent impedance spectroscopy measurements.

Series of micro- and nanocrystalline powders of PrCo$_{1-x}$Fe$_x$O$_3$ were obtained by solid-state reactions technique in air at 1473 K and via low-temperature sol-gel citrate route at 973 K, respectively. At the ambient conditions both series of the samples adopt orthorhombic perovskite structure isotypic with GdFeO$_3$. Concentration dependence of the unit cell dimensions of PrCo$_{1-x}$Fe$_x$O$_3$ proves a formation of continuous solid solution, peculiarity of which is the lattice parameters crossover and appearance of dimensionally cubic structure at $x = 0.4$ [1]. In-situ high temperature powder diffraction examination of PrCo$_{1-x}$Fe$_x$O$_3$ series revealed considerable anomalies in the lattice expansion which are especially pronounced for the cobalt-reach specimens. These anomalies, which are reflected in a sigmoidal dependence of the unit cell dimensions and in the considerable increasing of the thermal expansion coefficients, are obviously associated with transitions of Co$^{3+}$ ions from low spin to the higher spin states and the coupled metal-insulator transitions, occurred in in rare earth cobaltites at the elevated temperatures. Observed deviations in the lattice expansion in the PrCo$_{1-x}$Fe$_x$O$_3$ series become less pronounced with the decreasing cobalt content, but they are clearly detectable even in the iron-richest PrCo$_{0.1}$Fe$_{0.9}$O$_3$ specimen. Indeed, the temperature-dependent impedance measurements clearly prove the change of conductivity type from dielectric to the metallic behaviour in the mixed cobaltite-ferrites PrCo$_{1-x}$Fe$_x$O$_3$ at the elevated temperatures (Figure). The temperature of insulator-metal transition in PrCo$_{1-x}$Fe$_x$O$_3$ series increases from 723 K for $x = 0.4$ to 1100 K for $x = 0.8$ (Figure), which is in a good agreement with the results obtained from the analysis of thermal expansion data. Activation energy of electrical conductivity in the PrCo$_{1-x}$Fe$_x$O$_3$ series derived from the Arrhenius plots increases systematically with increasing Fe content from 0.56 eV for $x = 0.4$ to 0.93 eV for $x = 0.8$ samples, being in good agreement with the literature data for the parent PrCoO$_3$ and PrFeO$_3$ compounds (Figure, inset).

Figure. Temperature dependencies of the electrical conductivity of the PrCo$_{1-x}$Fe$_x$O$_3$ samples and concentration dependence of activation energy in the PrCo$_{1-x}$Fe$_x$O$_3$ series (inset).

Acknowledgements. The work was supported in parts by the Ukrainian Ministry of Education and Sciences under Projects “KMON” and “RZE”. Yu. S. acknowledges the support from Energie-Forschungszentrum Niedersachsen.