Effect of Hydrostatic Pressure on Thermodynamic Properties of Ferroelectric GPI

I.R. Zachek¹, R.R. Levitskii², A.S. Vdovych²

¹Lviv Polytechnic National University, 12 Bandera Str., 79013 Lviv, Ukraine
²Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine

On the basis of the model of ferroelectric GPI [1], modified by taking into account piezoelectric coupling of proton subsystem and lattice strains ε_i, within the two-particle cluster approximation we have calculated components of crystal polarization, components of dielectric permittivity tensor (fig.1), piezoelectric and thermal properties of the crystal at different values of hydrostatic pressure. Pressure decreases the phase transition temperature T_c (fig.2). The long-range interactions in our theory much stronger change under pressure, then short-range for nondeuterated crystal. At the proper set of parameters satisfactory description of experimental data is obtained.

Figure 1. The temperature dependence of the longitudinal dielectric permittivity of GPI (a) crystal at different values of pressure p (10⁹ dyn/cm²): 0.00 – 1, ▽[4], Δ[5], ◊[6], ○[2]; 0.6 – 2, ○ [2]; 0.9 – 3, ○ [2]; 1.7 – 4, ○ [2]; 3.0 – 5, ○ [2]; 4.0 – 6 and GPI₁₋ₓDGPI₀₊ₓ at different values of pressure p (10⁹ dyn/cm²): 0.0 – 1, ●[3]; 2 – 2, ▼[3]; 3 – 3, ▲[3]; 4 – 4, ◄ [3]; 5 – 5, ▼[3]; 6 – 6, □[3]; 8 – 7; 10 – 8.

Figure 2. The pressure dependence of temperature T_c of GPI₁₋ₓDGPIₓ at different concentrations of deuterium x: 0.00 – 1, ○ [2]; 0.8 – 2, ▲ [3].