Investigation of Double Beta Decay of 116Cd with the Help of Enriched 116CdWO$_4$ Crystal Scintillators

O.G. Polischuk1, A.S. Barabash2, P. Belli3,4, R. Bernabei3,4, F. Cappella5,6, V. Caracciolo7, R. Cerulli7, D.M. Chernyak1,8, F.A. Danevich1, S. d’Angelo3,4, A. Incicchitti5,6, D.V. Kasperovych1, V.V. Kobychev1, S.I. Konovalov2, M. Laubenstein7, V.M. Mokina1,5, D.V. Poda1,9, V.N. Shlege10, V.I. Tretyak1, V.I. Umatov2, Ya.V. Vasiliev10

1Institute for Nuclear Research, Kyiv, Ukraine
2NRC "Kurchatov Institute", Institute of Theoretical and Experimental Physics, Moscow, Russia
3Dipartimento di Fisica, Università di Roma “Tor Vergata”, Rome, Italy
4INFN sezione Roma “Tor Vergata”, Rome, Italy
5INFN, sezione di Roma, Rome, Italy
6Dipartimento di Fisica, Universitá di Roma “La Sapienza”, Rome, Italy
7INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy
8Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU), The University of Tokyo, Japan
9CSNSM, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
10Nikolaev Institute of Inorganic Chemistry, Novosibirsk, Russia

Neutrinoless double beta decay (0νββ) is considered as a powerful tool to check physics beyond the Standard Model of particles. The nucleus 116Cd is one of the most promising for 0νββ experiments thanks to the high energy of the decay $Q_{ββ} = 2813$ keV, relatively large isotopic abundance 7.5%, availability of relatively cheap enrichment and promising theoretical calculations. The AURORA experiment aiming to search for 2β processes in 116Cd with the help of two 116CdWO$_4$ crystal scintillators (total mass 1.16 kg) enriched in 116Cd (to 82%) is in progress at the Gran Sasso underground laboratory (Italy) of INFN. High optical and scintillation properties of the crystals were obtained thanks to the deep purification of the initial materials, and the advantage of the low-thermal-gradient Czochralski technique for the crystal growth. The 116CdWO$_4$ scintillators are highly radiopure (~0.03 mBq/kg of 228Th, < 0.005 mBq/kg of 226Ra, < 0.3 mBq/kg of 40K). We have also observed a strong segregation of thorium, radium and potassium in the crystal growing process, which allows to improve substantially the radiopurity level of the 116CdWO$_4$ scintillators. The two neutrino mode of the 2β decay of 116Cd was investigated with the highest up-to-date accuracy resulting in $T_{1/2} = [2.69 \pm 0.14\text{(syst.)} \pm 0.02\text{(stat.)}] \times 10^{19}$ yr. Limit on 0νββ mode has been obtained as $\text{lim}T_{1/2} = 1.9 \times 10^{23}$ yr at 90% C.L., which corresponds to the effective Majorana neutrino mass limit $\leq (1.2 - 1.8)$ eV (depending on the nuclear matrix elements used). New limits on other double beta decay processes in 116Cd (decays with majoron emission, transitions to excited levels) were also obtained.