Comparative Studies of Crystal Field Effects in YbCoGaO$_4$ and YbMgGaO$_4$ Single Crystals

I. Radelytskyi1, T. Zajarniuk1, A. Szewczyk1, M. Gutowska1, H.A. Dabkowska2, J. Fink-Finowicki1, P. Aleshkevych1, Ya. Zhydachevskyy1, V. Tsiumra1, H. Szymczak1

1Institute of Physics PAS, al.Lotnikow 32/46, 02-668 Warsaw, Poland
2The Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada

Spin geometrically frustrated systems attract a lot of attention because of specific magnetic properties like spin glass and spin liquid materials. The YbMgGaO$_4$ single crystal is a good quantum spin liquid candidate with two-dimensional and special isotropic magnetic triangular-lattice [1, 2]. In contrast the YbCoGaO$_4$ single crystal presents a unique three-dimensional Ising-like spin glass behavior. These single crystals were grown using the optical floating zone image furnace technique [3]. In this paper the properties of the ground-state Kramers doublet of Yb$^{3+}$ have been investigated to assess their influence on the electronic structure of both crystal. We plan to solve following problems:

1. Differences in mechanisms responsible for randomness in both crystals. These differences should be seen in low temperature linewidths of optical absorption transitions $^2F_{7/2} \rightarrow ^2F_{5/2}$ [4].

2. Differences in g-factors in the ground-state Kramers doublet of Yb$^{3+}$ in both crystals [5,6].

Acknowledgement. This study was partially supported by the National Center for Research and Development, research project no. PBS2/A5/36/2013.

