Висновок. Якщо в технологічному плані основними завданнями, які повинні бути вирішені є: розширення зони покриття та збільшення доступності підключення до мережі Інтернет; збільшення пропускної здатності телекомунікаційних мереж і інформаційних систем; підвищення надійності мереж і систем обробки даних; забезпечення інформаційної безпеки; впровадження механізмів накрізного забезпечення параметрів якості обслуговування “з кінця в кінець”[3, с.49], то зі сторони споживачів необхідним завданням є готовність до акумулювання знань та формування креативно-інтелектуального капіталу.

Література

UDK 004:378.147(045)

Oleg Bisiкalo, Yevhen Palamarchuk, Olena Kovalenko
Vinnysia National Technical University

RESULTS OF IMPLEMENTATION OF THE PILOT PROJECT OF MANAGEMENT SYSTEM FOR LEARNING AND CONCOMITANCE OF THE EDUCATIONAL, METHODOLOGICAL AND SCIENTIFIC ACTIVITIES “JETIQ”

© Bisikalo O., Palamarchuk Y., Kovalenko O., 2017

In this article is presented successful results of implementation of the management training system JetIQ. This integrated system consists of separate modules, which allow to form a personal environment (space) of electronic resources. Such information environment is formed by a programmatic platform and is used for monitoring of the learning results, scientific and methodological activities of teachers. This system covers all major processes of educational activity. It is built on ecosystem structure
principles. Each block of the system is interconnected with other ones and the information in it is dynamically updated. The main databases include teachers data, data of employees and students. The results of students evaluation are based on the current control (the electronic teacher’s journal) and on the final control (by electronic gradebook, summary reports etc). The methodological support of each discipline is formed as a structured knowledge which is based on the electronic instrument - discipline navigator. It contains the following modules of electronic resources: lectures summary, guidelines, scientific articles, manuals and textbooks; video and audio resources; test tasks; different links and so on. Dynamic websites of university departments form the comfortable environment for automatic reporting, integration with other electronic resources.

Keywords: information management systems; JetIQ, repository, environment; department WEB-site; electronic journal, discipline navigator, electronic resource, information ecosystem.

Authors represent the results of introducing the system of educational management. The complex system consists of separate modules that allow to form a personal repository of electronic resources. Such information storage is a platform program for monitoring the results of education, scientific and methodical activity of teachers. The system covers all the main processes of educational activity and is based on the principles of ecosystems. Each block of the system is interrelated with other ones, and information in the system is dynamically updated. The main databases include data of teachers, employees and students, the results of students’ evaluation based on the current control (electronic teacher’s journal) and on the final control (electronic gradebook, summary reports etc). The methodological support of each discipline is formed as structured knowledge which is based on the electronic instrument - discipline navigator. It contains the following modules of electronic resources: lecture summary, guidelines, scientific articles, manuals and textbooks; video and audio resources; test tasks; different links and so on. Dynamic websites of university departments form the comfortable environment for automatic reporting, integration with other electronic resources.
Introduction. The active development of informational educational ecosystems is dealt with the need to create a convenient electronic information environment for training, monitoring results and for supporting of scientific and methodological activities. The diversity of modern information resources and the advances of information technologies are actively affected on educational process and on the providing of teaching and learning technologies. Ecosystem in the educational space means the formation of a single information environment. It consists of separate interconnected modules. Circulation and generation of information flows are carried out through these connections. They cover all processes of a variety of educational activities such as the providing of reliable representation of learning outcomes, training, methodological and scientific activities. Despite the availability of a number of ready-made platforms for learning management, the author's software product allows to take into account all the peculiarities of the educational process in a higher education institution and to make simultaneous changes dynamically in all databases of the system. In addition to the implementation of the developed software product, it is necessary to solve tasks of switching to electronic reporting, for training of teachers and students, for problems of system integration with available electronic resources.

The purpose of the article is to present the implementation results of the such management system for education and to show the support with it of scientific and methodological activities.

Research results. One of the leading directions of the development of modern university is the introduction of the e-university concept by the creation of an information environment as a software platform. The purpose of it is the supporting of educational, methodological and scientific activities and also providing of mixed learning. The potential users of this system are different educational institutions of all levels, public educational organizations and educational centers of enterprises. The structure of electronic system "JetIQ" is based on the integrated client-server training management system (Fig. 1)

It implements functions of distance and mixed learning, management of educational processes, methodological and scientific activities. The structure of the system is based on a lot of modules such as: personal cabinets for students and teachers, electronic students department, personal repository, methodical repository,
integration with another electronic university resources, electronic scheduling, e-book, electronic department for HR etc.

Fig. 1 The main page JetIQ
The snapshot of teacher's desktop is presented in Fig. 2.

Fig. 2 The view of the teacher's desktop of "JetIQ" system

Conclusions. The JetIQ system was developed for universities and for training centers of commercial and non-governmental organizations. It is based on open source LAMP platform. The main implemented methods of it is mixed learning, monitoring of educational, scientific and methodological activities. This system is fully implemented at the Faculty of Computer Systems and Automation (VNTU) and is partially implemented at other departments of VNTU. JetIQ could be adapted for other educational institutions according to the peculiarities of their scientific and methodological work.

References

УДК 004:378.147(045)

Олена Коваленко
Вінницький національний технічний університет

ПОВЕДІНКОВІ МОДЕЛІ ІНФОРМАЦІЙНОЇ СИСТЕМИ ЗМІШАНОГО НАВЧАННЯ

©Коваленко О.О., 2017

Автор представляє результати розробки поведінкових моделей агентів інформаційної системи змішаного навчання. Загальні принципи роботи базуються на теорії дзеркал, які відповідають цілям інформаційної системи змішаного навчання. Збалансування різних видів навчання в системі досягається шляхом поведінкового моделювання ситуацій, що реалізуються в системі. Практичний досвід автора щодо запровадження системи змішаного навчання в українських вищих закладах на базі авторських проектів свідчить про