Removal of oxygen from water with the help of anion exchangers in sulfite form mainly applies to desalinated water or condensate. But it is unknown what will happen using water without

As test solutions we used Kiev tap water, NaCl solution in tap water ([Cl\(^{-}\)]=70-1500 mg/dm\(^3\)) NaClO\(_3\) solutions in water ([ClO\(_3\)^-]=100-300 meq/dm\(^3\)).

The influence of the concentrations of NaSO\(_3\) solution on the exchange capacity of anion exchanger AV-17-8 for SO\(_3^{2-}\) was determined, the evaluation fo the RA of modified anion exchanger using model solutions of NaClO\(_3\) was conducted. It was found that excessive RA occurs due to partial sorption of ClO\(_3^\)\(^-\). It is proved that RA of anion exchanger AV-17-8 in SO\(_3^{2-}\)-form depends on the concentration of the anion exchanger for SO\(_3^{2-}\) and desorption of SO\(_3^{2-}\) in the presence of competing anions. In the case of sorption of Cl\(^-\) it was show that desorption of SO\(_3^{2-}\) from anion exchange resin occurs at concentrations higher than 110 mg/dm\(^3\). The influence of HCO\(_3^-\) on desorption SO\(_3^{2-}\) was discovered: at concentrations of more than 6 meq/dm\(^3\) hydrogen ions can cause a decrease in RA of the modified anion exchanger up to to 20-35%. Therefore, anion exchange resin AV-17-8 in SO\(_3^{2-}\)-form should be used for deoxygenation of water containing not more than 6 meq/dm\(^3\) of anions.