Please use this identifier to cite or link to this item: http://ena.lp.edu.ua:8080/handle/ntb/44101
Title: Physical modeling of thermal processes of the air solar collector with flow turbulators
Other Titles: Фізичне моделювання теплових процесів повітряного сонячного колектора із турбулізаторами потоку
Authors: Желих, Василь
Козак, Христина
Дзерин, Олександра
Пашкевич, Володимир
Zhelykh, Vasyl
Kozak, Khrystyna
Dzeryn, Olexandra
Pashkevych, Volodymyr
Affiliation: Національний університет «Львівська політехніка»
Lviv Polytechnic National University
Bibliographic description (Ukraine): Physical modeling of thermal processes of the air solar collector with flow turbulators / Vasyl Zhelykh, Khrystyna Kozak, Olexandra Dzeryn, Volodymyr Pashkevych // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 9–16.
Bibliographic description (International): Physical modeling of thermal processes of the air solar collector with flow turbulators / Vasyl Zhelykh, Khrystyna Kozak, Olexandra Dzeryn, Volodymyr Pashkevych // Energy Engineering and Control Systems. — Lviv : Lviv Politechnic Publishing House, 2018. — Vol 4. — No 1. — P. 9–16.
Is part of: Energy Engineering and Control Systems, 1 (4), 2018
Journal/Collection: Energy Engineering and Control Systems
Issue: 1
Volume: 4
Issue Date: 29-Mar-2018
Publisher: Lviv Politechnic Publishing House
Place of the edition/event: Lviv
Keywords: повітряний сонячний колектор
фізична модель
турбулізатор потоку
теплоносій
повітряний канал
solar air collector
physical model
flow turbulator
coolant (transfer medium)
air duct
Number of pages: 8
Page range: 9-16
Start page: 9
End page: 16
Abstract: Проаналізовано існуючі системи сонячного повітряного теплопостачання. Представлено фізичну модель повітряного сонячного колектора (ПСК) із додатково встановленими турбулізаторами потоку, які розміщено у повітряному каналі сонячного колектора для покращення його теплових характеристик та ефективного використання у регіонах з помірним кліматом. Наведено енергетичні баланси для п’яти ключових елементів ПСК та записано систему балансових рівнянь. Для визначення геометричних та теплотехнічних параметрів турбулізаторів потоку записано ряд графічних залежностей. Визначено, що в повітряному каналі сонячного колектора спостерігається перехідний рух теплоносія, а максимальний коефіцієнт конвективного теплообміну між турбулізатором потоку та повітрям спостерігається за кута нахилу теплопоглинача 45 градусів. Здійснено комп’ютерне моделювання теплових процесів, які відбуваються у повітряному каналі сонячного колектора і отримано, що потужність запропонованого ПСК зросла на 23 % порівняно із сонячним колектором з плоскою теплопоглинальною пластиною.
The analysis of existing systems of solar air heating has been carried out. The physical model of the solar air collector (SAC) with additionally installed flow turbulators, which are located in the air channel of the solar collector, is presented to improve its thermal characteristics and efficient use in temperate climates. The energy balances for the five key elements of the SAC have been presented and the balance equations system has been written. To determine the geometrical and heat engineering parameters of the flow turbulators, a number of graphical dependencies have been recorded. We found out that in the air channel of the solar collector there is a transitional movement of the heat carrier, and the maximum coefficient of convective heat exchange between the turbulator of flow and air is observed at the angle of inclination of the heat absorber of 45 deg. The computer simulation of thermal processes occurring in the air channel of the solar collector was carried out and we discovered that the power of the proposed SAC increased by 23 % compared to the solar collector with a flat heat-absorbing plate.
URI: http://ena.lp.edu.ua:8080/handle/ntb/44101
Copyright owner: © Національний університет „Львівська політехніка“, 2018
© 2018 The Authors. Published by Lviv Polytechnic National University
URL for reference material: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8832c7f0-5cc3-4438-81d4-fe023558704d
References (Ukraine): [1] Shapoval S. P., Venhryn I. I. (2014) The future viability of solar energy in Ukraine. Magazine Plumbing, Heating, Air Conditioning, 8, p. 1–4. (in Ukrainian)
[2] Butuzov V. A. (2013) Solar Heat Supply in theWorld and in Russia. Magazine Plumbing, Heating, Air Conditioning, 8, p. 1–4. (in Russian)
[3] Butuzov V. A. (2013) Air Solar Collectors. Magazine Plumbing, Heating, Air Conditioning, 7, p. 1–5. (in Russian)
[4] Fakhretdinova E. M. (1984) Development and research of solar installations for the drying of agricultural products: Undergraduate thesis:05.14.05. Scientific and Production Association “The Sun”, Ashgabat, 147 p. (in Russian)
[5] Kozak Ch., Savchenko O., Zhelykh V. (2016) Analysis of Heat Flow Distribution in the Room with Installed Solar Air Heater. Thermal Engineering, Heat Supply, Ventilation: proceedings of Polish Association of Sanitary Engineers and Technicians, Vol. 45, No. 9, p. 359–362. doi: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8832c7f0-5cc3-4438-81d4-fe023558704d.
[6] Zhelykh V. M., Lesyk Ch. (2012) Thermosyphon Solar Collector. Patent for utility model of Ukraine No. 68773 UA MPK F24J 2. Industrial Property, No. 7; stated. 09/26/2011; has published Apr 10, 2012, Bul. No. 7 (in Ukrainian).
[7] Fabio S. (2008) Analysis of a Flat–plate Solar Collector. Heat and Mass Transport, Lund, Sweden, p. 1–4.
[8] Ahmad M. Saleh. (2012) Modeling Of Flat–Plate Solar Collector Operation In Transient States. Purdue University, Fort Wayne, Indiana,73 p.
[9] Duffie J. A., Beckman W. A. (2013) Solar Engineering of Thermal Processes. Solar Energy Laboratory University of Wisconsin-Madison,4th edition, 928 p.
[10] Bennamoun L. (2012) An Overview on Application of Exergy and Energy for Determination of Solar Drying Efficiency. International Journal of Energy Engineering, Vol. 2(5), p. 184–189.
[11] Vysotskaya N. N, Jerusalem A. M., Nevelson R. A., Fedorenko V. A. (1968) Technical scans of sheet metal products. Mechanical Engineering, 272 p. (in Russian).
[12] Yurkevych Y. S, Savchenko O. O., Kasynets M. Y (2012) Improving of the room heat regime at the solar panel using. Motrol. Automotive and Power Industry of Agriculture, Vol. 14(6), p. 3–6.
References (International): [1] Shapoval S. P., Venhryn I. I. (2014) The future viability of solar energy in Ukraine. Magazine Plumbing, Heating, Air Conditioning, 8, p. 1–4. (in Ukrainian)
[2] Butuzov V. A. (2013) Solar Heat Supply in theWorld and in Russia. Magazine Plumbing, Heating, Air Conditioning, 8, p. 1–4. (in Russian)
[3] Butuzov V. A. (2013) Air Solar Collectors. Magazine Plumbing, Heating, Air Conditioning, 7, p. 1–5. (in Russian)
[4] Fakhretdinova E. M. (1984) Development and research of solar installations for the drying of agricultural products: Undergraduate thesis:05.14.05. Scientific and Production Association "The Sun", Ashgabat, 147 p. (in Russian)
[5] Kozak Ch., Savchenko O., Zhelykh V. (2016) Analysis of Heat Flow Distribution in the Room with Installed Solar Air Heater. Thermal Engineering, Heat Supply, Ventilation: proceedings of Polish Association of Sanitary Engineers and Technicians, Vol. 45, No. 9, p. 359–362. doi: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-8832c7f0-5cc3-4438-81d4-fe023558704d.
[6] Zhelykh V. M., Lesyk Ch. (2012) Thermosyphon Solar Collector. Patent for utility model of Ukraine No. 68773 UA MPK F24J 2. Industrial Property, No. 7; stated. 09/26/2011; has published Apr 10, 2012, Bul. No. 7 (in Ukrainian).
[7] Fabio S. (2008) Analysis of a Flat–plate Solar Collector. Heat and Mass Transport, Lund, Sweden, p. 1–4.
[8] Ahmad M. Saleh. (2012) Modeling Of Flat–Plate Solar Collector Operation In Transient States. Purdue University, Fort Wayne, Indiana,73 p.
[9] Duffie J. A., Beckman W. A. (2013) Solar Engineering of Thermal Processes. Solar Energy Laboratory University of Wisconsin-Madison,4th edition, 928 p.
[10] Bennamoun L. (2012) An Overview on Application of Exergy and Energy for Determination of Solar Drying Efficiency. International Journal of Energy Engineering, Vol. 2(5), p. 184–189.
[11] Vysotskaya N. N, Jerusalem A. M., Nevelson R. A., Fedorenko V. A. (1968) Technical scans of sheet metal products. Mechanical Engineering, 272 p. (in Russian).
[12] Yurkevych Y. S, Savchenko O. O., Kasynets M. Y (2012) Improving of the room heat regime at the solar panel using. Motrol. Automotive and Power Industry of Agriculture, Vol. 14(6), p. 3–6.
Content type: Article
Appears in Collections:Energy Engineering And Control Systems. – 2018. – Vol. 4, No. 1



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.