Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://ena.lp.edu.ua:8080/handle/ntb/41495
Назва: Features of distribution of three-dimensional quasistationary electromagnetic field in a system with planar interface between media
Інші назви: Особливості розподілу тривимірного квазістаціонарного електромагнітного поля в системі з плоскоюграницею розподілу середовищ
Автори: Васецький, Юрій
Мазуренко, Ірина
Дзюба, Костянтин
Vasetsky, Yuriy
Mazurenko, Iryna
Dziuba, Konstantin
Приналежність: Ukrainian National Academy of Sciences
Бібліографічний опис: Vasetsky Y. Features of distribution of three-dimensional quasistationary electromagnetic field in a system with planar interface between media / Yuriy Vasetsky, Iryna Mazurenko, Konstantin Dziuba // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 7. — No 1. — P. 69–74.
Bibliographic description: Vasetsky Y. Features of distribution of three-dimensional quasistationary electromagnetic field in a system with planar interface between media / Yuriy Vasetsky, Iryna Mazurenko, Konstantin Dziuba // Computational Problems of Electrical Engineering. — Lviv : Lviv Politechnic Publishing House, 2017. — Vol 7. — No 1. — P. 69–74.
Є частиною видання: Computational Problems of Electrical Engineering, 1 (7), 2017
Випуск/№ : 1
Том: 7
Дата публікації: 19-лют-2017
Видавництво: Lviv Politechnic Publishing House
Місце видання, проведення: Lviv
Теми: quasi-stationary three-dimensional electromagnetic field
arbitrary loop with current
eddy currents
Кількість сторінок: 6
Діапазон сторінок: 69-74
Початкова сторінка: 69
Кінцева сторінка: 74
Короткий огляд (реферат): Встановлено, що розподіл густини індукованого струму в електропровідному півпросторі не має компоненти, що перпендикулярна плоскій границі поділу середовищ незалежно від властивостей середовища, конфігурації контуру вихідного струму в діелектричному півпросторі й залежності струму від часу. Показано, що поверхнева густина електричного заряду визначається тільки нормаль- ною компонентою напруженості індукованого електричного поля вихідного струму контура. У випадку сильного скін-ефекту в електропровідному півпросторі висновок зроблено на основі точного рішення задачі про електромагнітне поле. Поширення ствердження на загальний випадок середовища з довільними електрофізичними властивостями засновано на відомому нульовому рішенні крайової задачі для вертикальної компоненти напруженості електричного поля в електропровідному середовищі, яка сформульована як задача для однорідного рівняння парабо- лічного типу з нульовими крайовими умовами. Результати проілюстровано на прикладі розрахунку поверхневої густини електричного заряду у разі плоского контуру, коли підвід струму здійснюється по двом паралельним провідникам, що перпендикулярні центральній частини контуру.
It is established that the distribution of density of induced current in conducting half-space has no component perpendicular to the planar interface between media, regardless of (1) the properties of the medium, (2) configuration of a current-carrying contour, and (3) the current dependence on time. It is shown that the surface density of electric charge is determined only by the normal component of the strength of the induced electric field of the source-system of currents. In the case of a strong skin effect in electric conductive medium, conclusions have been drawn based on the correct solution of the task of electromagnetic field. Spreading the statement on the general case of medium with arbitrary electro physical properties is based on the well-known zero solution of the boundary problem for a vertical component of electric field strength in electrically conductive medium defined as a task of homogeneous equation of parabolic type with zero boundary conditions. Results are illustrated by the example of calculating the surface density of the electric charge in the case of the planar current-carrying contour if the current is supplied using two parallel conductors perpendicular to the central part of the contour.
URI (Уніфікований ідентифікатор ресурсу): http://ena.lp.edu.ua:8080/handle/ntb/41495
ISSN: 2224-0977
Власник авторського права: © Національний університет „Львівська політехніка“, 2017
© Vasetsky Yu., Mazurenko I., Dziuba K., 2017
Перелік літератури: [1] Yu. Vasetsky, Asymptotic methods for solving electrodynamics problems in systems with bulky curvilinear conductors, Kyiv, Ukraine: Naukova dumka, 2010. (Russian)
[2] J. Acero, R. Alonso, J. Burdio, L. Barragan, and D. Puyal, “Analytical Equivalent Impedance for a Planar Induction Heating System”, IEEE Transaction onMagnetics, vol. 42, no. 1, pp. 84–86, 2006.
[3] G. Tsitsikyan, “Electromagnetic field of a linear conductor with a current parallel to a boundary interface “air medium – conducting half-space”” Elektrichestvo, no. 12, pp. 55–61, 1997. (Russian)
[4] V. Rudnev, D. Loveless, R. Cook, and M. Black, Handbook of induction heating, Marcel Dekker Inc., 2003.
[5] I. Kondratenko and A. Rashchepkin, “Induction heating of moving stripe by current-carrying contours”, Tekhnichna Elektrodynamika, no. 3, pp. 3–9, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 1999. (Russian)
[6] Yu. Batygin , N. Lavinskyi, and L. Khimenko , Pulsed magnetic fields for progressive technologies. Kharkiv, Ukraine:Most-Tornado, 2003. (Russian)
[7] Yu. Vasetsky, Electromagnetic field of impulse current that flows above conducting half-space, Kyiv, Ukraine: Institute of Electrodynamics, 1992. (Russian)
[8] Yu. Vasetsky, L. Gorodzha, and I. Mazurenko, “Approximate model for the calculation of alternative magnetic field of arbitrary contour taking into account eddy current in conducting half-space”, Tekhnichna Elektrodynamika, no. 1, pp. 88–93, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 1999. (Russian)
[9] K. Polivanov, Theoretical bases of electrical engineering. No. 3. The theory of electromagnetic field. Moscow, Russia: Energiya, 1969. (Russian)
[10] K. Shimoni, Theoretical electrical engineering – Moscow, Russia: Mir, 1964. (Russian)
[11] I. E. Tamm, Bases of the theory of electricity, Moscow, Russia: GITTL, 1956. (Russian)
[12] A. Fedorchenko The theoretical physics. Classical electrodynamics, Kyiv, Ukraine: Vyshcha shkola, 1988. (Russian)
[13] O. Tozoni and I. Maergoyz, Calculation of threedimensional electromagnetic fields, Kyiv, Ukraine: Tekhnika, 1974. (Russian).)
[14] L. Landau and E. Lifshits, Electrodynamics of continua. Moscow, Russia: Nauka, 1982. (Russian)
[15] H. Knoepfel, Pulsed High Magnetic Fields, Amsterdam-London: North-Holland Publishing Company, 1970.
[16] Yu. Vasetskiy “The electromagnetic field of a spatial loop with a current above a planar surface of a conducting body with a strong skin-effect”, Elektrichestvo, no 3, pp. 55–61. (Russian)
[17] Y. M.Vasetsky and D.I.Vlasov, “On magnetic field determination of a current-carrying contour above the planar surface of a perfect electrical conductor”, Tekhnichna Elektrodynamika, no. 2, pp. 9–10, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2012. (Russian)
[18] A. Tihonov and A. Samarskiy, Equations of mathematical physics. Moscow, Russia: Nauka, 1966. (Russian)
References: [1] Yu. Vasetsky, Asymptotic methods for solving electrodynamics problems in systems with bulky curvilinear conductors, Kyiv, Ukraine: Naukova dumka, 2010. (Russian)
[2] J. Acero, R. Alonso, J. Burdio, L. Barragan, and D. Puyal, "Analytical Equivalent Impedance for a Planar Induction Heating System", IEEE Transaction onMagnetics, vol. 42, no. 1, pp. 84–86, 2006.
[3] G. Tsitsikyan, "Electromagnetic field of a linear conductor with a current parallel to a boundary interface "air medium – conducting half-space"" Elektrichestvo, no. 12, pp. 55–61, 1997. (Russian)
[4] V. Rudnev, D. Loveless, R. Cook, and M. Black, Handbook of induction heating, Marcel Dekker Inc., 2003.
[5] I. Kondratenko and A. Rashchepkin, "Induction heating of moving stripe by current-carrying contours", Tekhnichna Elektrodynamika, no. 3, pp. 3–9, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 1999. (Russian)
[6] Yu. Batygin , N. Lavinskyi, and L. Khimenko , Pulsed magnetic fields for progressive technologies. Kharkiv, Ukraine:Most-Tornado, 2003. (Russian)
[7] Yu. Vasetsky, Electromagnetic field of impulse current that flows above conducting half-space, Kyiv, Ukraine: Institute of Electrodynamics, 1992. (Russian)
[8] Yu. Vasetsky, L. Gorodzha, and I. Mazurenko, "Approximate model for the calculation of alternative magnetic field of arbitrary contour taking into account eddy current in conducting half-space", Tekhnichna Elektrodynamika, no. 1, pp. 88–93, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 1999. (Russian)
[9] K. Polivanov, Theoretical bases of electrical engineering. No. 3. The theory of electromagnetic field. Moscow, Russia: Energiya, 1969. (Russian)
[10] K. Shimoni, Theoretical electrical engineering – Moscow, Russia: Mir, 1964. (Russian)
[11] I. E. Tamm, Bases of the theory of electricity, Moscow, Russia: GITTL, 1956. (Russian)
[12] A. Fedorchenko The theoretical physics. Classical electrodynamics, Kyiv, Ukraine: Vyshcha shkola, 1988. (Russian)
[13] O. Tozoni and I. Maergoyz, Calculation of threedimensional electromagnetic fields, Kyiv, Ukraine: Tekhnika, 1974. (Russian).)
[14] L. Landau and E. Lifshits, Electrodynamics of continua. Moscow, Russia: Nauka, 1982. (Russian)
[15] H. Knoepfel, Pulsed High Magnetic Fields, Amsterdam-London: North-Holland Publishing Company, 1970.
[16] Yu. Vasetskiy "The electromagnetic field of a spatial loop with a current above a planar surface of a conducting body with a strong skin-effect", Elektrichestvo, no 3, pp. 55–61. (Russian)
[17] Y. M.Vasetsky and D.I.Vlasov, "On magnetic field determination of a current-carrying contour above the planar surface of a perfect electrical conductor", Tekhnichna Elektrodynamika, no. 2, pp. 9–10, Kyiv, Ukraine: Institute of Electrodynamics of Ukraine, 2012. (Russian)
[18] A. Tihonov and A. Samarskiy, Equations of mathematical physics. Moscow, Russia: Nauka, 1966. (Russian)
Тип вмісту : Article
Розташовується у зібраннях:Computational Problems Of Electrical Engineering. – 2017 – Vol. 7, No. 1



Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.